Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.061
Filtrar
1.
Crit Care ; 28(1): 133, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649970

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is responsible for 400,000 deaths annually worldwide. Few improvements have been made despite five decades of research, partially because ARDS is a highly heterogeneous syndrome including various types of aetiologies. Lower airway microbiota is involved in chronic inflammatory diseases and recent data suggest that it could also play a role in ARDS. Nevertheless, whether the lower airway microbiota composition varies between the aetiologies of ARDS remain unknown. The aim of this study is to compare lower airway microbiota composition between ARDS aetiologies, i.e. pulmonary ARDS due to influenza, SARS-CoV-2 or bacterial infection. METHODS: Consecutive ARDS patients according to Berlin's classification requiring invasive ventilation with PCR-confirmed influenza or SARS-CoV-2 infections and bacterial infections (> 105 CFU/mL on endotracheal aspirate) were included. Endotracheal aspirate was collected at admission, V3-V4 and ITS2 regions amplified by PCR, deep-sequencing performed on MiSeq sequencer (Illumina®) and data analysed using DADA2 pipeline. RESULTS: Fifty-three patients were included, 24 COVID-19, 18 influenza, and 11 bacterial CAP-related ARDS. The lower airway bacteriobiota and mycobiota compositions (ß-diversity) were dissimilar between the three groups (p = 0.05 and p = 0.01, respectively). The bacterial α-diversity was significantly lower in the bacterial CAP-related ARDS group compared to the COVID-19 ARDS group (p = 0.04). In contrast, influenza-related ARDS patients had higher lung mycobiota α-diversity than the COVID-19-related ARDS (p = 0 < 01). CONCLUSION: Composition of lower airway microbiota (both microbiota and mycobiota) differs between influenza, COVID-19 and bacterial CAP-related ARDS. Future studies investigating the role of lung microbiota in ARDS pathophysiology should take aetiology into account.


Assuntos
COVID-19 , Influenza Humana , Microbiota , Síndrome do Desconforto Respiratório , Humanos , COVID-19/microbiologia , COVID-19/complicações , COVID-19/fisiopatologia , Síndrome do Desconforto Respiratório/microbiologia , Síndrome do Desconforto Respiratório/virologia , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Influenza Humana/microbiologia , Influenza Humana/fisiopatologia , Influenza Humana/complicações , Microbiota/fisiologia , Idoso , Infecções Bacterianas/microbiologia
2.
Virol J ; 20(1): 19, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726151

RESUMO

Several factors are associated with the severity of the respiratory disease caused by the influenza virus. Although viral factors are one of the most studied, in recent years the role of the microbiota and co-infections in severe and fatal outcomes has been recognized. However, most of the work has focused on the microbiota of the upper respiratory tract (URT), hindering potential insights from the lower respiratory tract (LRT) that may help to understand the role of the microbiota in Influenza disease. In this work, we characterized the microbiota of the LRT of patients with Influenza A using 16S rRNA sequencing. We tested if patients with different outcomes (deceased/recovered) and use of antibiotics differ in their microbial community composition. We found important differences in the diversity and composition of the microbiota between deceased and recovered patients. In particular, we detected a high abundance of opportunistic pathogens such as Granulicatella, in patients either deceased or with antibiotic treatment. Also, we found antibiotic treatment correlated with lower diversity of microbial communities and with lower probability of survival in Influenza A patients. Altogether, the loss of microbial diversity could generate a disequilibrium in the community, potentially compromising the immune response increasing viral infectivity, promoting the growth of potentially pathogenic bacteria that, together with altered biochemical parameters, can be leading to severe forms of the disease. Overall, the present study gives one of the first characterizations of the diversity and composition of microbial communities in the LRT of Influenza patients and its relationship with clinical variables and disease severity.


Assuntos
Influenza Humana , Microbiota , Síndrome do Desconforto Respiratório , Sistema Respiratório , Humanos , Influenza Humana/genética , Influenza Humana/microbiologia , Influenza Humana/virologia , Microbiota/genética , Nariz , Sistema Respiratório/microbiologia , RNA Ribossômico 16S/genética
3.
Front Cell Infect Microbiol ; 12: 881462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860381

RESUMO

Secondary bacterial infection (superinfection) post influenza is a serious clinical complication often leading to pneumonia and death. Eicosanoids are bioactive lipid mediators that play critical roles in the induction and resolution of inflammation. CYP450 lipid metabolites are anti-inflammatory lipid mediators that are produced at an excessive level during superinfection potentiating the vulnerability to secondary bacterial infection. Using Nanostring nCounter technology, we have defined the targeted transcriptional response where CYP450 metabolites dampen the Toll-like receptor signaling in macrophages. CYP450 metabolites are endogenous ligands for the nuclear receptor and transcription factor, PPARα. Activation of PPARα hinders NFκB p65 activities by altering its phosphorylation and nuclear translocation during TLR stimulation. Additionally, activation of PPARα inhibited anti-bacterial activities and enhanced macrophage polarization to an anti-inflammatory subtype (M2b). Lastly, Ppara-/- mice, which are partially protected in superinfection compared to C57BL/6 mice, have increased lipidomic responses and decreased M2-like macrophages during superinfection.


Assuntos
Coinfecção , Influenza Humana , Superinfecção , Animais , Coinfecção/microbiologia , Eicosanoides , Humanos , Influenza Humana/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , PPAR alfa , Superinfecção/microbiologia
4.
Sci Rep ; 12(1): 1915, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115596

RESUMO

Influenza-like illness (ILI), a disease caused by respiratory pathogens including influenza virus, is a major health concern in older adults. There is little information on changes and recovery dynamics of the nasopharyngeal (NP) microbiota of older adults associated with an ILI. Here, we compared the NP microbiota in older adults reporting (n = 240) or not (n = 157) ILI during the 2014-2015 influenza season at different times of the ILI event. A small but significant effect of the ILI was observed on the microbiota community composition and structure when compared to controls and samples collected at recovery. Corynebacterium was negatively associated with ILI and its abundance increased after recovery. Potential pathobionts such as Haemophilus, Porphyromonas and Gemella had higher abundances during acute-ILI. Stability and changes in the NP microbial community showed individual dynamics. Key core genera, Corynebacterium, Moraxella and Dolosigranulum exhibited higher inter-individual variability in acute-ILI, but showed comparable variability to controls after recovery. Participants in the ILI group with higher core microbiota abundances at the acute phase showed higher microbiota stability after recovery. Our findings demonstrate that acute-ILI is associated with alterations in the phylogenetic structure of the NP microbiota in older adults. The variation in the core microbiota suggests imbalances in the ecosystem, which could potentially play a role in the susceptibility and recovery of the NP microbiota after an ILI event.


Assuntos
Envelhecimento , Influenza Humana/microbiologia , Influenza Humana/virologia , Microbiota , Nasofaringe/microbiologia , Nasofaringe/virologia , Fatores Etários , Idoso , Carga Bacteriana , Disbiose , Feminino , Humanos , Influenza Humana/diagnóstico , Masculino , Pessoa de Meia-Idade , Filogenia , Dinâmica Populacional , Fatores de Tempo , Carga Viral
5.
Exp Biol Med (Maywood) ; 247(5): 409-415, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775842

RESUMO

The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.


Assuntos
Bactérias/genética , COVID-19/microbiologia , Influenza Humana/microbiologia , Microbiota/fisiologia , Nasofaringe/microbiologia , Adolescente , Adulto , Humanos , Microbiota/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960631

RESUMO

Disease tolerance has emerged as an alternative way, in addition to host resistance, to survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results in superinfection and lethality. Several host cytokines and cells have shown promise in promoting tissue protection and damage control while others induce severe immunopathology leading to high levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately, survival during viral-bacterial co-infection.


Assuntos
Imunidade Inata , Influenza Humana/imunologia , Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Coinfecção , Citocinas/imunologia , Homeostase , Humanos , Influenza Humana/microbiologia , Influenza Humana/virologia , Infecções Pneumocócicas/microbiologia , Superinfecção
7.
Front Immunol ; 12: 765528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868014

RESUMO

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.


Assuntos
Fibras na Dieta/farmacologia , Imunidade Humoral/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunogenicidade da Vacina , Influenza Humana/microbiologia , Influenza Humana/prevenção & controle , Masculino , Camundongos , Pessoa de Meia-Idade , Orthomyxoviridae/imunologia , Estações do Ano , Vacinação , Adulto Jovem
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829979

RESUMO

Influenza is a respiratory virus that alone or in combination with secondary bacterial pathogens can contribute to the development of acute pneumonia in persons >65 years of age. Host innate immune antiviral signaling early in response to influenza is essential to inhibit early viral replication and guide the initiation of adaptive immune responses. Using young adult (3 months) and aged adult mice infected with mouse adapted H1N1 or H3N2, the results of our study illustrate dysregulated and/or diminished activation of key signaling pathways in aged lung contribute to increased lung inflammation and morbidity. Specifically, within the first seven days of infection, there were significant changes in genes associated with TLR and RIG-I signaling detected in aged murine lung in response to H1N1 or H3N2. Taken together, the results of our study expand our current understanding of age-associated changes in antiviral signaling in the lung.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/genética , Pneumonia/genética , Células A549 , Animais , Proteína DEAD-box 58/genética , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/microbiologia , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/microbiologia , Pneumonia/virologia , Receptores Toll-Like/genética , Replicação Viral/genética
9.
Eur J Clin Microbiol Infect Dis ; 40(9): 1899-1907, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33837879

RESUMO

To explore the diagnostic value of a galactomannan (GM) detection for non-immunocompromised critically ill patients with influenza-associated aspergillosis (IAA). In this retrospective case-control study, we explored the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic (ROC) curve (AUC) of serum and bronchoalveolar lavage fluid (BALF) GM tests by four detection strategies at different detection time points and with different compound modes. In total, 90 patients were evaluated. The AUC values of the second serum GM test, the first and second BALF GM tests, were significantly higher (0.839 (95% CI 0.716 to 0.963), P < 0.01; 0.904 (95% CI 0.820 to 0.988), P < 0.01; 0.827 (95% CI 0.694 to 0.961), P = 0.043) than that of the first serum GM test (0.548 (95% CI 0.377 to 0.718)). We found that at least one positive result on two consecutive serum GM tests (0.719 (95% CI 0.588 to 0.849)) was the best compared with the first positive test (0.419 (95% CI 0.342 to 0.641), P < 0.01) and positives on two consecutive tests (0.636 (95% CI 0.483 to 0.790), P = 0.014). However, there were no differences between those three detection strategies of BALF GM. The BALF GM test might have a better diagnostic value for IAA in the ICU than the serum GM test. A possible cutoff value of 1.0 to 1.3 was set for GM from BALF specimens for IAA. A single serum GM test is not routinely recommended, but at least one positive result on two consecutive tests appeared to be useful.


Assuntos
Aspergilose/diagnóstico , Líquido da Lavagem Broncoalveolar/química , Técnicas de Laboratório Clínico/estatística & dados numéricos , Galactose/análogos & derivados , Influenza Humana/complicações , Aspergilose Pulmonar Invasiva/diagnóstico , Mananas/análise , Adulto , Idoso , Estudos de Casos e Controles , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/normas , Estado Terminal , Feminino , Galactose/análise , Humanos , Influenza Humana/microbiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Estações do Ano , Sensibilidade e Especificidade
10.
BMC Infect Dis ; 21(1): 199, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618663

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic in the Netherlands it was noticed that very few blood cultures from COVID-19 patients turned positive with clinically relevant bacteria. This was particularly evident in comparison to the number of positive blood cultures during previous seasonal epidemics of influenza. This observation raised questions about the occurrence and causative microorganisms of bacteraemia in COVID-19 patients, especially in the perspective of the widely reported overuse of antibiotics and the rising rate of antibiotic resistance. METHODS: We conducted a retrospective cohort study on blood culture results in influenza A, influenza B and COVID-19 patients presenting to two hospitals in the Netherlands. Our main outcome consisted of the percentage of positive blood cultures. The percentage of clinically relevant blood cultures, isolated bacteria and 30-day all-cause mortality served as our secondary outcomes. RESULTS: A total of 1331 viral episodes were analysed in 1324 patients. There was no statistically significant difference (p = 0.47) in overall occurrence of blood culture positivity in COVID-19 patients (9.0, 95% CI 6.8-11.1) in comparison to influenza A (11.4, 95% CI 7.9-14.8) and influenza B patients (10.4, 95% CI 7.1-13.7,). After correcting for the high rate of contamination, the occurrence of clinically relevant bacteraemia in COVID-19 patients amounted to 1.0% (95% CI 0.3-1.8), which was statistically significantly lower (p = 0.04) compared to influenza A patients (4.0, 95% CI 1.9-6.1) and influenza B patients (3.0, 95% CI 1.2-4.9). The most frequently identified bacterial isolates in COVID-19 patients were Escherichia coli (n = 2) and Streptococcus pneumoniae (n = 2). The overall 30-day all-cause mortality for COVID-19 patients was 28.3% (95% CI 24.9-31.7), which was statistically significantly higher (p = <.001) when compared to patients with influenza A (7.1, 95% CI 4.3-9.9) and patients with influenza B (6.4, 95% CI 3.8-9.1). CONCLUSIONS: We report a very low occurrence of community-acquired bacteraemia amongst COVID-19 patients in comparison to influenza patients. These results reinforce current clinical guidelines on antibiotic management in COVID-19, which only advise utilization of antibiotics when a bacterial co-infection is suspected.


Assuntos
Bacteriemia/epidemiologia , COVID-19/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana/microbiologia , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , COVID-19/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estudos Retrospectivos
11.
Microbes Infect ; 23(1): 104764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33038518

RESUMO

Seasonal influenza spreads during winter in temperate countries. Primary viral pneumoniae resulting from aggravation triggers acute respiratory distress syndrome, which is a serious respiratory disorder. We have identified a unique pattern of lung microbiota in patients with the syndrome. In this study, we hypothesized that the unique microbiota was also associated with primary influenza viral pneumoniae. Bacterial culture supernatants of Streptococcus oralis and Streptococcus mitis detected from the patients significantly increased viral replication (maximum 10-fold increase) in lung epithelial cells. Our results suggest that the lung environment microbiota is significantly involved in viral replication.


Assuntos
Células Epiteliais/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Pulmão/microbiologia , Microbiota , Streptococcus/isolamento & purificação , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/microbiologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Streptococcus/classificação , Streptococcus/genética , Streptococcus/fisiologia
12.
J Med Virol ; 93(4): 2385-2395, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331656

RESUMO

The burden and impact of secondary superadded infections in critically ill coronavirus disease 2019 (COVID-19) patients is widely acknowledged. However, there is a dearth of information regarding the impact of COVID-19 in patients with tuberculosis, HIV, chronic hepatitis, and other concurrent infections. This review was conducted to evaluate the consequence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in patients with concurrent co-infections based on the publications reported to date. An extensive comprehensive screening was conducted using electronic databases up to 3rd September 2020 after obtaining registration with PROSPERO (CRD420202064800). The observational studies or interventional studies in English, evaluating the impact of SARS-CoV-2 in patients with concurrent infections are included for the meta-analyses. Our search retrieved 20 studies, with a total of 205,702 patients. Patients with tuberculosis (RR = 2.10; 95% CI, 1.75-2.51; I2 = 0%), influenza (RR = 2.04; 95% CI, 0.15-28.25, I2 = 99%) have an increased risk of mortality during a co-infection with SARS-CoV-2. No significant impact is found in people living with HIV (RR = 0.99; 95% CI, 0.82-1.19; I2 = 30%), Chronic hepatitis (RR = 1.15; 95% CI, 0.73-1.81; I2 = 10%). Several countries (Brazil, Paraguay, Argentina, Peru, Colombia, and Singapore) are on the verge of a dengue co epidemic (cumulative 878,496 and 5,028,380 cases of dengue and COVID-19 respectively). The impact of COVID-19 in patients of concurrent infections with either tuberculosis or influenza is detrimental. The clinical outcomes of COVID-19 in HIV or chronic hepatitis patients are comparable to COVID-19 patients without these concurrent infections.


Assuntos
COVID-19/epidemiologia , COVID-19/microbiologia , Coinfecção/epidemiologia , Coinfecção/microbiologia , Coinfecção/virologia , Bases de Dados Factuais , Dengue/epidemiologia , Dengue/microbiologia , Infecções por HIV/epidemiologia , Infecções por HIV/microbiologia , Hepatite Crônica/epidemiologia , Hepatite Crônica/microbiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/microbiologia , SARS-CoV-2/isolamento & purificação , Tuberculose/epidemiologia , Tuberculose/microbiologia
13.
Proc Natl Acad Sci U S A ; 117(49): 31386-31397, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229573

RESUMO

Influenza A virus (IAV)-related mortality is often due to secondary bacterial infections, primarily by pneumococci. Here, we study how IAV-modulated changes in the lungs affect bacterial replication in the lower respiratory tract (LRT). Bronchoalveolar lavages (BALs) from coinfected mice showed rapid bacterial proliferation 4 to 6 h after pneumococcal challenge. Metabolomic and quantitative proteomic analyses demonstrated capillary leakage with efflux of nutrients and antioxidants into the alveolar space. Pneumococcal adaptation to IAV-induced inflammation and redox imbalance increased the expression of the pneumococcal chaperone/protease HtrA. Presence of HtrA resulted in bacterial growth advantage in the IAV-infected LRT and protection from complement-mediated opsonophagocytosis due to capsular production. Absence of HtrA led to growth arrest in vitro that was partially restored by antioxidants. Pneumococcal ability to grow in the IAV-infected LRT depends on the nutrient-rich milieu with increased levels of antioxidants such as ascorbic acid and its ability to adapt to and cope with oxidative damage and immune clearance.


Assuntos
Antioxidantes/metabolismo , Capilares/patologia , Influenza Humana/microbiologia , Infecções Pneumocócicas/microbiologia , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Humanos , Inflamação/complicações , Inflamação/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Infecções por Orthomyxoviridae/microbiologia , Oxirredução , Estresse Oxidativo , Fagocitose , Sistema Respiratório/patologia
14.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105830

RESUMO

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Assuntos
Infecções por Coronavirus/terapia , Influenza Humana/terapia , Transtornos Mentais/terapia , Esclerose Múltipla/terapia , Pneumonia Viral/terapia , Probióticos/uso terapêutico , Infecções Respiratórias/terapia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , Encéfalo/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/microbiologia , Infecções por Coronavirus/virologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Imunomodulação , Influenza Humana/imunologia , Influenza Humana/microbiologia , Influenza Humana/virologia , Pulmão/imunologia , Transtornos Mentais/imunologia , Transtornos Mentais/microbiologia , Consórcios Microbianos/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/patogenicidade , Orthomyxoviridae/fisiologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/microbiologia , Pneumonia Viral/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , SARS-CoV-2 , Simbiose/imunologia
15.
Bull Exp Biol Med ; 169(5): 653-656, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32986206

RESUMO

The morphological and physiological characteristics of Bacillus thuringiensis strains were analyzed and conditions for obtaining culture fluid with maximum yield of secreted RNases were determined. Zymographic analysis showed that culture fluid of B. thuringiensis strains along with low-molecular-weight (15-20 kDa) RNases contained enzymes with a molecular weight ~55 kDa and their content depended on the duration and conditions of culturing. Preparations based on B. thuringiensis culture fluid were effective against human influenza virus A/Aichi/2/68 (H3N2). In experiments on mice infected with 10 LD50 influenza virus strain A/Aichi/2/68 (H3N2), we selected effective variants of preparations based on culture fluid of B. thuringiensi strains for preventive administration that provided reliable protection of infected animals (protection coefficient 50%), close to that of the reference drug Tamiflu.


Assuntos
Antivirais/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/virologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A/patogenicidade , Kobuvirus/patogenicidade , Oseltamivir/farmacologia , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/microbiologia , Kobuvirus/efeitos dos fármacos
16.
PLoS Pathog ; 16(8): e1008761, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790758

RESUMO

The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.


Assuntos
Proteínas de Bactérias/metabolismo , Coinfecção/mortalidade , Vírus da Influenza A/patogenicidade , Influenza Humana/mortalidade , Pulmão/patologia , Infecções Pneumocócicas/mortalidade , Streptococcus pneumoniae/patogenicidade , Proteínas de Bactérias/genética , Sobrevivência Celular , Coinfecção/epidemiologia , Humanos , Influenza Humana/microbiologia , Influenza Humana/patologia , Influenza Humana/virologia , Pulmão/microbiologia , Pulmão/virologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Infecções Pneumocócicas/virologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Streptococcus pneumoniae/metabolismo , Estresse Fisiológico , Virulência
17.
Clin Microbiol Infect ; 26(10): 1395-1399, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32603803

RESUMO

OBJECTIVES: To investigate the incidence of bacterial and fungal coinfection of hospitalized patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this retrospective observational study across two London hospitals during the first UK wave of coronavirus disease 2019 (COVID-19). METHODS: A retrospective case series of hospitalized patients with confirmed SARS-CoV-2 by PCR was analysed across two acute NHS hospitals (20 February-20 April 2020; each isolate reviewed independently in parallel). This was contrasted to a control group of influenza-positive patients admitted during the 2019-2020 flu season. Patient demographics, microbiology and clinical outcomes were analysed. RESULTS: A total of 836 patients with confirmed SARS-CoV-2 were included; 27 (3.2%) of 836 had early confirmed bacterial isolates identified (0-5 days after admission), rising to 51 (6.1%) of 836 throughout admission. Blood cultures, respiratory samples, pneumococcal or Legionella urinary antigens and respiratory viral PCR panels were obtained from 643 (77%), 110 (13%), 249 (30%), 246 (29%) and 250 (30%) COVID-19 patients, respectively. A positive blood culture was identified in 60 patients (7.1%), of which 39 were classified as contaminants. Bacteraemia resulting from respiratory infection was confirmed in two cases (one each community-acquired Klebsiella pneumoniae and ventilator-associated Enterobacter cloacae). Line-related bacteraemia was identified in six patients (three Candida, two Enterococcus spp. and one Pseudomonas aeruginosa). All other community-acquired bacteraemias (n = 16) were attributed to nonrespiratory infection. Zero concomitant pneumococcal, Legionella or influenza infection was detected. A low yield of positive respiratory cultures was identified; Staphylococcus aureus was the most common respiratory pathogen isolated in community-acquired coinfection (4/24; 16.7%), with pseudomonas and yeast identified in late-onset infection. Invasive fungal infections (n = 3) were attributed to line-related infections. Comparable rates of positive coinfection were identified in the control group of confirmed influenza infection; clinically relevant bacteraemias (2/141; 1.4%), respiratory cultures (10/38; 26.3%) and pneumococcal-positive antigens (1/19; 5.3%) were low. CONCLUSIONS: We found a low frequency of bacterial coinfection in early COVID-19 hospital presentation, and no evidence of concomitant fungal infection, at least in the early phase of COVID-19.


Assuntos
Infecções Bacterianas/epidemiologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Influenza Humana/epidemiologia , Micoses/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Infecções Respiratórias/epidemiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/virologia , COVID-19 , Coinfecção , Infecções Comunitárias Adquiridas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/microbiologia , Infecções por Coronavirus/virologia , Feminino , Hospitalização , Humanos , Influenza Humana/diagnóstico , Influenza Humana/microbiologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Micoses/diagnóstico , Micoses/microbiologia , Micoses/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/microbiologia , Pneumonia Viral/virologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Reino Unido/epidemiologia
18.
Proc Natl Acad Sci U S A ; 117(27): 15789-15798, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581129

RESUMO

Patients infected with influenza are at high risk of secondary bacterial infection, which is a major proximate cause of morbidity and mortality. We have shown that in mice, prior infection with influenza results in increased inflammation and mortality upon Staphylococcus aureus infection, recapitulating the human disease. Lipidomic profiling of the lungs of superinfected mice revealed an increase in CYP450 metabolites during lethal superinfection. These lipids are endogenous ligands for the nuclear receptor PPARα, and we demonstrate that Ppara-/- mice are less susceptible to superinfection than wild-type mice. PPARα is an inhibitor of NFκB activation, and transcriptional profiling of cells isolated by bronchoalveolar lavage confirmed that influenza infection inhibits NFκB, thereby dampening proinflammatory and prosurvival signals. Furthermore, network analysis indicated an increase in necrotic cell death in the lungs of superinfected mice compared to mice infected with S. aureus alone. Consistent with this, we observed reduced NFκB-mediated inflammation and cell survival signaling in cells isolated from the lungs of superinfected mice. The kinase RIPK3 is required to induce necrotic cell death and is strongly induced in cells isolated from the lungs of superinfected mice compared to mice infected with S. aureus alone. Genetic and pharmacological perturbations demonstrated that PPARα mediates RIPK3-dependent necroptosis and that this pathway plays a central role in mortality following superinfection. Thus, we have identified a molecular circuit in which infection with influenza induces CYP450 metabolites that activate PPARα, leading to increased necrotic cell death in the lung which correlates with the excess mortality observed in superinfection.


Assuntos
Inflamação/genética , Influenza Humana/genética , PPAR alfa/genética , Infecções Estafilocócicas/genética , Superinfecção/genética , Animais , Lavagem Broncoalveolar/métodos , Coinfecção/genética , Coinfecção/microbiologia , Coinfecção/mortalidade , Sistema Enzimático do Citocromo P-450/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Inflamação/microbiologia , Inflamação/mortalidade , Influenza Humana/microbiologia , Influenza Humana/mortalidade , Pulmão/microbiologia , Pulmão/patologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Knockout , Necroptose/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Superinfecção/mortalidade
19.
Nat Commun ; 11(1): 2537, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439901

RESUMO

Infection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation. The effects of influenza infection on the upper respiratory tract (URT) microbiome are largely unknown. Here, we report a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets. Uninfected human patients and ferret URT microbiomes have stable healthy ecostate communities both within and between individuals. In contrast, infected patients and ferrets exhibit large changes in bacterial community composition over time and between individuals. The unhealthy ecostates of infected individuals progress towards the healthy ecostate, coinciding with viral clearance and recovery. Pseudomonadales associate statistically with the disturbed microbiomes of infected individuals. The dynamic and resilient microbiome during influenza virus infection in multiple hosts provides a compelling rationale for the maintenance of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated bacterial co-infections.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/microbiologia , Microbiota , Nasofaringe/microbiologia , Adolescente , Adulto , Idoso , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Criança , Pré-Escolar , Disbiose/microbiologia , Disbiose/virologia , Feminino , Furões , Humanos , Lactente , Influenza Humana/virologia , Estudos Longitudinais , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Nasofaringe/virologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Adulto Jovem
20.
Microb Pathog ; 144: 104189, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32278696

RESUMO

BACKGROUND: The Mycoplasma pneumoniae(MP) and influenza virus are two common pathogens causing pediatric acute respiratory tract infection. Though emerging reports demonstrated imbalanced respiratory microbiota in respiratory infection, the respiratory microbiota differences between MP and influenza virus remained to be explored. METHODS: We collected paired nasopharyngeal(NP) and oropharyngeal(OP) microbial samples from 165 children, including 40 patients with MP pneumonia, 66 patients with influenza virus infection and 59 age-matched healthy children. RESULTS: The NP and OP microbial diversity decreased in MP infection and increased in influenza infection as compared to healthy children. The Staphylococcus dominated Mycoplasma pneumoniae pneumonia(MPP) patients' NP microbiota while five representative patterns remained in influenza patients. In OP microbiota, Streptococcus significantly enriched in MPP group and decreased in Influenza group. Decision tree analysis indicated that Ralstonia and Acidobacteria could discriminate microbial samples in healthy (59/67), MP (35/38) and Influenza groups (55/60) with high accuracy. CONCLUSIONS: This study revealed that dominant bacterial structure in the airway was niche- and disease-specific. It could facilitate the stratification of respiratory microbial samples with different infectious agents.


Assuntos
Influenza Humana/microbiologia , Microbiota , Mycoplasma pneumoniae , Nasofaringe/microbiologia , Orofaringe/microbiologia , Pneumonia por Mycoplasma/microbiologia , Criança , DNA Bacteriano , Humanos , Influenza Humana/virologia , Mycoplasma pneumoniae/patogenicidade , Orthomyxoviridae , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA