RESUMO
BACKGROUND & AIM: The association between habitual coffee or caffeine consumption and age at onset (AAO) of Huntington's disease (HD) is unclear. We employed Mendelian randomization to investigate the causal relationship between coffee consumption and AAO of HD. METHODS: The instrumental variable including 14 independent genetic variants associated with coffee consumption was selected from a genome-wide association study (GWAS) meta-analysis of 375,833 individuals of European ancestry. Genetic association estimates for AAO of HD were obtained from the Genetic Modifiers of Huntington's Disease Consortium GWAS meta-analysis including 9064 HD patients of European ancestry. The inverse variance weighted method was used to evaluate the causal estimate and a comprehensive set of analyses tested the robustness of our results. RESULTS: Genetically predicted higher coffee consumption was associated with an earlier AAO of HD (ß = -1.84 years, 95% confidence interval = -3.47 to -0.22, P = 0.026). Results were robust to potential pleiotropy and weak instrument bias. CONCLUSIONS: This genetic study suggests high coffee consumption is associated with an earlier AAO of HD. Coffee is widely consumed and thus our findings, if confirmed, offers a potential way to delay the onset of this debilitating autosomal dominant disease.
Assuntos
Café , Ingestão de Líquidos/genética , Doença de Huntington/genética , Adulto , Idade de Início , Causalidade , Inquéritos sobre Dietas , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
Although sociological studies affirm the importance of parental care in the survival of offspring, maltreatment-including child neglect-remains prevalent in many countries. While child neglect is well known to affect child development, the causes of maternal neglect are poorly understood. Here, we found that female mice with a deletion mutation of CAST (a presynaptic release-machinery protein) showed significantly reduced weaning rate when primiparous and a recovered rate when multiparous. Indeed, when nurturing, primiparous and nulliparous CAST knock out (KO) mice exhibited less crouching time than control mice and moved greater distances. Contrary to expectations, plasma oxytocin (OXT) was not significantly reduced in CAST KO mice even though terminals of magnocellular neurons in the posterior pituitary expressed CAST. We further found that compared with control mice, CAST KO mice drank significantly less water when nurturing and had a greater preference for sucrose during pregnancy. We suggest that deficiency in presynaptic release-machinery protein impairs the facilitation of some maternal behaviours, which can be compensated for by experience and learning.
Assuntos
Anedonia , Proteínas do Citoesqueleto/genética , Comportamento Materno/fisiologia , Animais , Proteínas do Citoesqueleto/metabolismo , Ingestão de Líquidos/genética , Feminino , Masculino , Camundongos Knockout , Comportamento de Nidação/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Neuro-Hipófise/metabolismo , Período Pós-Parto , Gravidez , Olfato , Sacarose , Sinapses/fisiologia , DesmameRESUMO
Estimated heritability of coffee intake ranges from 0.36 to 0.58, however, these point estimates assume that inherited effects are the same throughout the distribution of coffee intake, i.e., whether consumption is high or low relative to intake in the population. Quantile regression of 4788 child-parent pairs and 2380 siblings showed that offspring-parent and sibling concordance became progressively greater with increasing quantiles of coffee intake. Each cup/day increase in the parents' coffee intake was associated with an offspring increase of 0.020 ± 0.013 cup/day at the 10th percentile of the offsprings' coffee intake (slope ± SE, NS), 0.137 ± 0.034 cup/day at their 25th percentile (P = 5.2 × 10-5), 0.159 ± 0.029 cup/day at the 50th percentile (P = 5.8 × 10-8), 0.233 ± 0.049 cup/day at the 75th percentile (P = 1.8 × 10-6), and 0.284 ± 0.054 cup/day at the 90th percentile (P = 1.2 × 10-7). This quantile-specific heritability suggests that factors that distinguish heavier vs. lighter drinkers (smoking, male sex) will likely manifest differences in estimated heritability, as reported.
Assuntos
Café/metabolismo , Ingestão de Líquidos/genética , Família , Feminino , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Estatísticos , Característica Quantitativa Herdável , Fatores de Risco , FumantesRESUMO
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmosodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Assuntos
Apetite/genética , Encéfalo/metabolismo , Dieta Hipossódica , Sódio na Dieta/administração & dosagem , Canais de Cátion TRPV/fisiologia , Animais , Apetite/efeitos dos fármacos , Dieta Hipossódica/efeitos adversos , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Furosemida/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sódio na Dieta/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Sede/efeitos dos fármacos , Sede/fisiologiaRESUMO
BACKGROUND: Genetic polymorphisms in lncRNA HULC may affect the susceptibility and clinical outcome of cancer. We aimed to investigate the association of HULC tagSNPs with the risk and prognosis of hepatocellular cancer, as well as the influence of the SNPs on lncRNA expression level. METHODS: A total of 1338 samples were recruited in the risk study. Among them, 351 HCC patients were involved in the prognosis study. SNP genotyping was performed using KASP method and lncRNA expression was detected by Real-time PCR. RESULTS: We found a promoter SNP, rs1041279, was associated with a 1.41-fold increased HCC risk (Pâ¯=â¯0.032). In the stratified analysis, rs1041279 had greater ORs for the increased HCC risk in the male subgroup (Pâ¯=â¯0.014, ORâ¯=â¯1.54). Furthermore, multi-logistic regression analysis revealed a two-way interaction effect of smoking-rs2038540 SNP on HCC risk (ORâ¯=â¯4.20). And MDR analysis consistently demonstrated a SNP-environmental interaction among smoking-drinking-rs2038540 SNP as the best model for predicting HCC risk (Pâ¯=â¯0.0107). In our study, no significant association was found between HULC SNPs and the overall survival (Pâ¯>â¯0.05), and no significant effect was observed of rs1041279 SNP on lncRNA-HULC expression (Pâ¯>â¯0.05). CONCLUSION: lncRNA-HULC rs1041279 SNP and the interaction of rs2038540 SNP with environmental factors could enhance HCC risk.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Idoso , Ingestão de Líquidos/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Prognóstico , Fumar/genética , Análise de SobrevidaRESUMO
The single nucleotide polymorphism of the µ-opioid receptor, OPRM1 A118G, has been associated with greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present studies, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in a model of heroin-induced devaluation of an otherwise palatable saccharin cue when repeated saccharin-heroin pairings occurred every 24h (Experiment 1) or every 48h (Experiment 2). The results showed that, while both the 118AA and 118GG mice demonstrated robust avoidance of the heroin-paired saccharin cue following daily taste-drug pairings, only the 118AA mice suppressed intake of the heroin-paired saccharin cue when 48h elapsed between each taste-drug pairing. Humanized 118GG mice, then, defend their intake of the sweet cue despite saccharin-heroin pairings and this effect is illuminated by the use of spaced, rather than massed, trials. Given that this pattern of strain difference is not evident with saccharin-cocaine pairings (Freet et al., 2015), reduced avoidance of the heroin-paired saccharin cue by the 118GG mice may be due to an interaction between the opiate and the subjects' drive for the sweet or, alternatively, to differential downstream sensitivity to the aversive kappa mediated properties of the drug. These alternative hypotheses are addressed.
Assuntos
Analgésicos Opioides/farmacologia , Heroína/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides mu/genética , Sacarina/administração & dosagem , Edulcorantes/administração & dosagem , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Comportamento de Escolha/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Sinais (Psicologia) , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Opioides mu/metabolismo , Recompensa , PaladarRESUMO
Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte-macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.
Assuntos
Contactinas/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos Transgênicos/genética , Transgenes , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Ingestão de Líquidos/genética , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica , Humanos , Hipertensão/genética , Masculino , Camundongos Knockout , Fenótipo , Reação em Cadeia da PolimeraseRESUMO
BACKGROUND: There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. RESULTS: Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. CONCLUSIONS: We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current breeding goals have not and will not affect normal water drinking behaviour. Birds express a wide range of different drinking behaviour strategies, which can be suitable to a wide range of environments and production systems.
Assuntos
Ingestão de Líquidos/genética , Comportamento Alimentar , Característica Quantitativa Herdável , Perus/genética , Animais , Perus/fisiologiaRESUMO
Nesfatin/nucleobindin-2 (nesf/NUCB2), a precursor of the anorexigenic protein nesfatin-1, is selectively expressed in the hypothalamic nuclei, which are central to the regulation of the autonomic nervous system. The present study sought to investigate the involvement of nesf/NUCB2 in the regulation of blood pressure and ingestive behavior, by using nesf/NUCB2-transgenic (Tg) mice. Blood pressure and heart rates were measured under conscious and unconscious conditions. Twenty-four-hour water intake and urine volume of male nesf/NUCB2-Tg mice and their littermates in metabolic cages were measured. After killing, kidney weight was measured and the mRNA expression of epithelial sodium channel (ENaC)-α and ENaC-γ was measured in the hypothalamus and kidney with real-time PCR. Systolic, diastolic and mean blood pressure were significantly higher in nesf/NUCB2-Tg mice, but pulse rate was not affected in conscious mice. In contrast, isoflurane anesthesia prevented an increase in blood pressure in the nesf/NUCB2-Tg mice. Twenty-four-hour water intake and urine volume were significantly higher in the nesf/NUCB2-Tg mice than in their non-Tg littermates. Urine sodium concentration was significantly lower in the nesf/NUCB2-Tg mice, although the serum sodium concentration and urine sodium excretion were not different between the genotypes. Kidney weight was significantly higher in the nesf/NUCB2-Tg mice than their non-Tg littermates, although there were no clear differences in the kidney histological findings between genotypes. The mRNA expression of ENaC-γ, but not ENaC-α, was decreased in the hypothalami of nesf/NUCB2-Tg mice. Our data suggested that Nesf/NUCB2 is involved in the regulation of blood pressure in the brain.
Assuntos
Pressão Sanguínea/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Canais Epiteliais de Sódio/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ingestão de Líquidos/genética , Ingestão de Alimentos/genética , Canais Epiteliais de Sódio/metabolismo , Hipotálamo/metabolismo , Rim/anatomia & histologia , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas , Tamanho do Órgão/genéticaRESUMO
AMP-activated kinase (AMPK) controls cell energy homeostasis by modulating ATP synthesis and expenditure. In vitro studies have suggested AMPK may also control key elements of renal epithelial electrolyte transport but in vivo physiological confirmation is still insufficient. We studied sodium renal handling and extracellular volume regulation in mice with genetic deletion of AMPK catalytic subunits. AMPKα1 knockout (KO) mice exhibit normal renal sodium handling and a moderate antidiuretic state. This is accompanied by higher urinary aldosterone excretion rates and reduced blood pressure. Plasma volume, however, was found to be increased compared with wild-type mice. Thus blood volume is preserved despite a significantly lower hematocrit. The lack of a defect in renal function in AMPKα1 KO mice could be explained by a compensatory upregulation in AMPK α2-subunit. Therefore, we used the Cre-loxP system to knock down AMPKα2 expression in renal epithelial cells. Combining this approach with the systemic deletion of AMPKα1 we achieved reduced renal AMPK activity, accompanied by a shift to a moderate water- and salt-wasting phenotype. Thus we confirm the physiologically relevant role of AMPK in the kidney. Furthermore, our results indicate that in vivo AMPK activity stimulates renal sodium and water reabsorption.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ingestão de Líquidos/genética , Rim/metabolismo , Equilíbrio Hidroeletrolítico/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Pressão Sanguínea/genética , Volume Sanguíneo/genética , Ingestão de Alimentos/genética , Camundongos , Camundongos KnockoutRESUMO
OBJECTIVE: The neurobiological factors underlying a predisposition towards developing epilepsy and its common behavioral comorbidities are poorly understood. FAST rats are a strain that has been selectively bred for enhanced vulnerability to kindling, while the SLOW strain has been bred to be resistant to kindling. FAST rats also exhibit behavioral traits reminiscent of those observed in neurodevelopmental disorders (autism spectrum disorder (ASD)/attention-deficit/hyperactivity disorder (ADHD)) commonly comorbid with epilepsy. In this study, we aimed to investigate neuroanatomical differences between these strains that may be associated with a differential vulnerability towards these interrelated disorders. METHODS: Ex vivo high-resolution magnetic resonance imaging on adult male FAST and SLOW rat brains was performed to identify morphological differences in regions of interest between the two strains. Behavioral examination using open-field, water consumption, and restraint tests was also conducted on a subgroup of these rats to document their differential ASD/ADHD-like behavior phenotype. Using optical stereological methods, the volume of cerebellar granule, white matter, and molecular layer and number of Purkinje cells were compared in a separate cohort of adult FAST and SLOW rats. RESULTS: Behavioral testing demonstrated hyperactivity, impulsivity, and polydipsia in FAST versus SLOW rats, consistent with an ASD/ADHD-like phenotype. Magnetic resonance imaging analysis identified brain structural differences in FAST compared with SLOW rats, including increased volume of the cerebrum, corpus callosum, third ventricle, and posterior inferior cerebellum, while decreased volume of the anterior cerebellar vermis. Stereological measurements on histological slices indicated significantly larger white matter layer volume, reduced number of Purkinje cells, and smaller molecular layer volume in the cerebellum in FAST versus SLOW rats. SIGNIFICANCE: These findings provide evidence of structural differences between the brains of FAST and SLOW rats that may be mechanistically related to their differential vulnerability to kindling and associated comorbid ASD/ADHD-like behaviors.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Ingestão de Líquidos/genética , Comportamento Impulsivo/fisiologia , Excitação Neurológica/patologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/psicologia , Masculino , Memória/fisiologia , Ratos , Ratos Wistar , Especificidade da EspécieRESUMO
Water-intake behavior is under the control of brain systems that sense body fluid conditions at sensory circumventricular organs (sCVOs); however, the underlying mechanisms have not yet been elucidated in detail. Nax is a sodium (Na(+)) level sensor in the brain, and the transient receptor potential vanilloid (TRPV) channels TRPV1 and TRPV4 have been proposed to function as osmosensors. We herein investigated voluntary water intake immediately induced after an intracerebroventricular administration of a hypertonic NaCl solution in TRPV1-, TRPV4-, Nax-, and their double-gene knockout (KO) mice. The induction of water intake by TRPV1-KO mice was normal, whereas intake by TRPV4-KO and Nax-KO mice was significantly less than that by WT mice. Water intake by Nax/TRPV4-double KO mice was similar to that by the respective single KO mice. When TRPV4 activity was blocked with a specific antagonist HC-067047, water intake by WT mice was significantly reduced, whereas intake by TRPV4-KO and Nax-KO mice was not. Similar results were obtained with the administration of miconazole, which inhibits the biosynthesis of epoxyeicosatrienoic acids (EETs), endogenous agonists for TRPV4, from arachidonic acid (AA). Intracerebroventricular injection of hypertonic NaCl with AA or 5,6-EET restored water intake by Nax-KO mice to the wild-type level but not that by TRPV4-KO mice. These results suggest that the Na(+) signal generated in Nax-positive glial cells leads to the activation of TRPV4-positive neurons in sCVOs to stimulate water intake by using EETs as gliotransmitters. Intracerebroventricular injection of equiosmolar hypertonic sorbitol solution induced small but significant water intake equally in all the genotypes, suggesting the presence of an unknown osmosensor in the brain.
Assuntos
Líquido Cefalorraquidiano/metabolismo , Ingestão de Líquidos/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Transdução de Sinais , Sódio/metabolismo , Canais de Cátion TRPV , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Regulação do Apetite/fisiologia , Encéfalo/fisiologia , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1-7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.
Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Ingestão de Líquidos , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Angiotensina II/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Feminino , Injeções Intraventriculares , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genéticaRESUMO
The association between the single nucleotide polymorphism rs762551 in the cytochrome P450 family 1, subfamily A2 gene (CYP1A2) and caffeine consumption remains controversial. We conducted a meta-analysis to clarify this potential association. Twelve studies were selected from articles retrieved from the and Google Scholar databases, and the data were analyzed to determine the odds ratio (OR) of genotypes AA (conferring fast caffeine metabolism) vs AC + CC (conferring slow caffeine metabolism). Comparisons were made between 6161 high caffeine consumers and 3219 low caffeine consumers. The overall analysis showed a significant association between genotype AA and coffee intake [OR = 1.13, 95% confidence interval (CI) = 1.03-1.24; Q = 19.23, P = 0.06; I2 = 43%]. In subgroup analyses, the association was also found within male, younger, and Caucasian subjects (OR = 1.21, 95%CI = 1.08- 1.35; OR = 1.71, 95%CI = 1.18-2.48; OR = 1.29, 95%CI = 1.12-1.49, respectively) but not in female, older, and Asian subjects (OR = 0.98, 95%CI = 0.83-1.15; OR = 0.83, 95%CI = 0.56-1.22; OR = 0.91, 95%CI = 0.71-1.17, respectively). Therefore, the rs762551 AA genotype may lead to higher coffee intake, especially in males, younger age groups, and individuals of Caucasian ethnicity. Our data highlight the need to test other CYP1A2 polymorphisms showing significance in genome-wide association studies to clarify the association with caffeine intake in the Asian population.
Assuntos
Café , Citocromo P-450 CYP1A2/genética , Ingestão de Líquidos/genética , Comportamento Alimentar/etnologia , Polimorfismo de Nucleotídeo Único , Adulto , Fatores Etários , Idoso , Povo Asiático , Estudos de Casos e Controles , Ingestão de Líquidos/etnologia , Comportamento de Ingestão de Líquido , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , População BrancaRESUMO
The A118G single-nucleotide polymorphism (SNP rs1799971) in the µ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two µ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate-heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.
Assuntos
Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Indanos/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides mu/genética , Triazóis/farmacologia , Adolescente , Adulto , Idoso , Alanina/genética , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Feminino , Glicina/genética , Humanos , Masculino , Pessoa de Meia-Idade , Testes Farmacogenômicos , Receptores Opioides mu/agonistas , Adulto JovemRESUMO
The subfornical organ (SFO) plays a pivotal role in body fluid homeostasis through its ability to integrate neurohumoral signals and subsequently alter behavior, neuroendocrine function, and autonomic outflow. The purpose of the present study was to evaluate whether selective activation of SFO neurons using virally mediated expression of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) stimulated thirst and salt appetite. Male C57BL/6 mice (12-15 wk) received an injection of rAAV2-CaMKII-HA-hM3D(Gq)-IRES-mCitrine targeted at the SFO. Two weeks later, acute injection of clozapine N-oxide (CNO) produced dose-dependent increases in water intake of mice with DREADD expression in the SFO. CNO also stimulated the ingestion of 0.3 M NaCl. Acute injection of CNO significantly increased the number of Fos-positive nuclei in the SFO of mice with robust DREADD expression. Furthermore, in vivo single-unit recordings demonstrate that CNO significantly increases the discharge frequency of both ANG II- and NaCl-responsive neurons. In vitro current-clamp recordings confirm that bath application of CNO produces a significant membrane depolarization and increase in action potential frequency. In a final set of experiments, chronic administration of CNO approximately doubled 24-h water intake without an effect on salt appetite. These findings demonstrate that DREADD-induced activation of SFO neurons stimulates thirst and that DREADDs are a useful tool to acutely or chronically manipulate neuronal circuits influencing body fluid homeostasis.
Assuntos
Apetite/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio/metabolismo , Órgão Subfornical/efeitos dos fármacos , Sede/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Angiotensina II/farmacologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Solução Salina Hipertônica/administração & dosagem , Órgão Subfornical/citologiaRESUMO
Desiccate (Desi), initially discovered as a gene expressing in the epidermis of Drosophila larvae for protection from desiccation stress, was recently found to be robustly expressed in the adult labellum; however, the function, as well as precise expression sites, was unknown. Here, we found that Desi is expressed in two different types of non-neuronal cells of the labellum, the epidermis and thecogen accessory cells. Labellar Desi expression was significantly elevated under arid conditions, accompanied by an increase in water ingestion by adults. Desi overexpression also promoted water ingestion. In contrast, a knockdown of Desi expression reduced feeding as well as water ingestion due to a drastic decrease in the gustatory sensillar sensitivity for all tested tastants. These results indicate that Desi helps protect insects from desiccation damage by not only preventing dehydration through the integument but also accelerating water ingestion via elevated taste sensitivities of the sensilla.
Assuntos
Células Quimiorreceptoras/metabolismo , Desidratação/genética , Ingestão de Líquidos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Sensilas/metabolismo , Animais , Células Quimiorreceptoras/ultraestrutura , Desidratação/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Larva/citologia , Larva/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sensilas/ultraestrutura , Paladar/genética , Água/metabolismoRESUMO
We examined if caffeine intake has a differential effect in subjects with high and low genetic susceptibility to Parkinson's disease (PD), a common neurodegenerative disorder. A case control study involving 812 subjects consisting of PD and healthy controls were conducted. Caffeine intake assessed by a validated questionnaire and genotyping of PD gene risk variant (LRRK2 R1628P) was carried out. Compared to caffeine takers with the wild-type genotype (low genetic susceptibility), non-caffeine takers with R1628P variant (high genetic susceptibility) had a 15 times increased risk of developing PD (OR = 15.4, 95% CI = (1.94, 122), P = 0.01), whereas caffeine takers with R1628P (intermediate susceptibility) had a 3 times risk (OR = 3.07, 95% CI = (2.02, 4.66), P < 0.001). Caffeine intake would significantly reduce the risk of PD much more in those with high genetic susceptibility compared to those with low genetic susceptibility.
Assuntos
Cafeína/efeitos adversos , Ingestão de Líquidos/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Doença de Parkinson/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Adulto JovemRESUMO
Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1-5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and µ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors.
Assuntos
Regulação do Apetite/genética , Encéfalo/fisiologia , Comportamento de Ingestão de Líquido/fisiologia , Comportamento Alimentar/fisiologia , Receptores de Somatostatina/fisiologia , Animais , Ingestão de Líquidos/genética , Ingestão de Alimentos/fisiologia , Humanos , Receptores de Somatostatina/genética , Roedores , Somatostatina/fisiologiaRESUMO
BACKGROUND: The influence of previous alcohol (ethanol [EtOH])-drinking experience on increasing the rate and amount of future EtOH consumption might be a genetically regulated phenomenon critical to the development and maintenance of repeated excessive EtOH abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge EtOH consumption over repeated drinking-in-the-dark (DID) EtOH access sessions (i.e., "front loading"). The primary goal of this study was to evaluate identical parameters in high-alcohol-preferring (HAP) mice to determine whether similar temporal alterations in limited-access EtOH drinking develop in a population selected for high EtOH preference/intake under continuous (24-hour) access conditions. METHODS: Using specialized volumetric drinking devices, HAP mice received 14 daily 2-hour DID EtOH or water access sessions. A subset of these mice was then given 1 day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter-administered EtOH. RESULTS: The amount of EtOH consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, EtOH front loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of EtOH access. CONCLUSIONS: These data further illustrate the complexity and importance of the temporal aspects of limited-access EtOH consumption and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of EtOH and water consumption.