Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Funct Integr Genomics ; 24(5): 171, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317806

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined. METHODS: CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression. CONCLUSION: YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.


Assuntos
Apoptose , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57 , Células da Granulosa , Síndrome do Ovário Policístico , Ativação Transcricional , Regulação para Cima , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Adulto , Regiões Promotoras Genéticas
2.
J Transl Med ; 22(1): 852, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304928

RESUMO

BACKGROUND: The syncytiotrophoblast (SCT) layer in the placenta serves as a crucial physical barrier separating maternal-fetal circulation, facilitating essential signal and substance exchange between the mother and fetus. Any abnormalities in its formation or function can result in various maternal syndromes, such as preeclampsia. The transition of proliferative villous cytotrophoblasts (VCT) from the mitotic cell cycle to the G0 phase is a prerequisite for VCT differentiation and their fusion into SCT. The imprinting gene P57Kip2, specifically expressed in intermediate VCT capable of fusion, plays a pivotal role in driving this key event. Moreover, aberrant expression of P57Kip2 has been linked to pathological placental conditions and adverse fetal outcomes. METHODS: Validation of STK40 interaction with P57Kip2 using rigid molecular simulation docking and co-immunoprecipitation. STK40 expression was modulated by lentivirus in BeWo cells, and the effect of STK40 on trophoblast fusion was assessed by real-time quantitative PCR, western blot, immunofluorescence, and cell viability and proliferation assays. Co-immunoprecipitation, transcriptome sequencing, and western blot were used to determine the potential mechanisms by which STK40 regulates P57Kip2. RESULTS: In this study, STK40 has been identified as a novel interacting protein with P57Kip2, and its expression is down-regulated during the fusion process of trophoblast cells. Overexpressing STK40 inhibited cell fusion in BeWo cells while stimulating mitotic cell cycle activity. Further experiments indicated that this effect is attributed to its specific binding to the CDK-binding and the Cyclin-binding domains of P57Kip2, mediating the E3 ubiquitin ligase COP1-mediated ubiquitination and degradation of P57Kip2. Moreover, abnormally high expression of STK40 might significantly contribute to the occurrence of preeclampsia. CONCLUSIONS: This study offers new insights into the role of STK40 in regulating the protein-level homeostasis of P57Kip2 during placental development.


Assuntos
Fusão Celular , Inibidor de Quinase Dependente de Ciclina p57 , Proteínas Serina-Treonina Quinases , Trofoblastos , Ubiquitina-Proteína Ligases , Ubiquitinação , Feminino , Humanos , Gravidez , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise , Trofoblastos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Sci Rep ; 14(1): 13389, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862595

RESUMO

While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas Quinases Associadas a Fase S , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Humanos , Transdução de Sinais , Ciclo Celular/genética , Transição Epitelial-Mesenquimal/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
4.
Nat Commun ; 15(1): 3953, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729967

RESUMO

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Assuntos
Lactação , Glândulas Mamárias Animais , Leite , Animais , Feminino , Glândulas Mamárias Animais/metabolismo , Humanos , Camundongos , Leite/metabolismo , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Células Epiteliais/metabolismo , Macropodidae/metabolismo , Mamíferos , Marsupiais
5.
Gene ; 923: 148590, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772516

RESUMO

Long noncoding RNAs (lncRNAs) are implicated in a number of regulatory functions in eukaryotic genomes. In humans, KCNQ1OT1 is a 91 kb imprinted lncRNA that inhibits multiple surrounding genes in cis. Among them, CDKN1C is closely related to KCNQ1OT1 and is involved in multiple epigenetic disorders. Here, we found that pigs also had a relatively conserved paternal allele expressing KCNQ1OT1 and had a shorter 5' end (∼27 kb) compared to human KCNQ1OT1. Knockdown of KCNQ1OT1 using antisense oligonucleotides (ASO) showed that upregulation of CDKN1C expression in pigs. However, porcine KCNQ1OT1 did not affect the DNA methylation status of the CpG islands in the promoters of KCNQ1OT1 and CDKN1C. Inhibition of DNA methyltransferase using Decitabine treatment resulted in a significant increase in both KCNQ1OT1 and CDKN1C expression, suggesting that the regulation between KCNQ1OT1 and CDKN1C may not be dependent on RNA interference. Further use of chromosome conformation capture and reverse transcription-associated trap detection in the region where CDKN1C was located revealed that KCNQ1OT1 bound to the CDKN1C promoter and affected chromosome folding. Phenotypically, inhibition of KCNQ1OT1 at the cumulus-oocyte complex promoted cumulus cell transformation, and to upregulated the expression of ALPL at the early stage of osteogenic differentiation of porcine bone marrow mesenchymal stem cells. Our results confirm that the expression of KCNQ1OT1 imprinting in pigs as well as porcine KCNQ1OT1 regulates the expression of CDKN1C through direct promoter binding and chromatin folding alteration. And this regulatory mechanism played an important role in cell differentiation.


Assuntos
Cromatina , Inibidor de Quinase Dependente de Ciclina p57 , Metilação de DNA , Impressão Genômica , Regiões Promotoras Genéticas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Cromatina/genética , Cromatina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ilhas de CpG , Regulação da Expressão Gênica
6.
Int J Gynecol Pathol ; 43(5): 474-486, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38291567

RESUMO

Immunostaining with p57KIP2 is a widely used diagnostic technique to differentiate complete hydatidiform moles (CHMs) from partial hydatidiform moles (PHM) and non-molar hydropic abortion. However, distinguishing between PHMs and non-molar hydropic abortions using histopathology alone is often challenging. This study aimed to evaluate the technical validity and additional benefits of using fluorescence in situ hybridization (FISH) in combination with p57KIP2 immunostaining to diagnose molar and non-molar conceptuses. The study involved 80 specimens, which underwent genetic diagnosis using short tandem repeat analysis, including 44 androgenetic CHMs, 20 diandric monogynic PHMs, 14 biparental non-molar hydropic abortions, 1 monoandric digynic triploid abortion, and 1 vaginal specimen of gestational trophoblastic neoplasia. Two pathologists independently diagnosed the cases based on morphology and p57KIP2 immunostaining while the clinical information was masked. FISH analysis was performed using 3 probes (CEP17, CEPX, and CEPY), which revealed that all androgenetic CHM and biparental diploid non-molar hydropic abortion specimens were diploid. Among the 20 diandric monogynic PHM cases examined by analyzing short tandem repeat polymorphisms, 18 were triploid, and the remaining 2 were diploid. These two specimens were possibly androgenetic/biparental mosaics based on FISH analysis, where the three-signal ratios counting 50 cells were clearly within the diploid ranges. Eight of the 20 genetic PHMs and 2 of the 14 genetically confirmed non-molar hydropic abortions that were falsely diagnosed based on morphology and immunohistochemistry by at least 1 pathologist were correctly diagnosed as PHM and non-molar hydropic abortion, respectively, by FISH analysis. However, 1 monoandric digynic villus was classified as triploid by FISH analysis, leading to a false PHM diagnosis. In conclusion, the combination of FISH analysis with p57KIP2 immunostaining helps in diagnosing molar and non-molar conceptuses in numerous cases; nevertheless, exceptional cases should be considered.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Mola Hidatiforme , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Uterinas , Humanos , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/genética , Mola Hidatiforme/patologia , Mola Hidatiforme/metabolismo , Feminino , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Gravidez , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Uterinas/metabolismo , Aborto Espontâneo/genética , Aborto Espontâneo/diagnóstico , Aborto Espontâneo/patologia , Adulto , Genótipo
7.
Epigenetics ; 19(1): 2294516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38126131

RESUMO

Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Gravidez , Feminino , Humanos , Animais , Ratos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Impressão Genômica , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Rim/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo
8.
Endocrinology ; 165(2)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38151968

RESUMO

Mutations in CDKN1C, encoding p57KIP2, a canonical cell cycle inhibitor, underlie multiple pediatric endocrine syndromes. Despite this central role in disease, little is known about the structure and function of p57KIP2 in the human pancreatic beta cell. Since p57KIP2 is predominantly nuclear in human beta cells, we hypothesized that disease-causing mutations in its nuclear localization sequence (NLS) may correlate with abnormal phenotypes. We prepared RIP1 insulin promoter-driven adenoviruses encoding deletions of multiple disease-associated but unexplored regions of p57KIP2 and performed a comprehensive structure-function analysis of CDKN1C/p57KIP2. Real-time polymerase chain reaction and immunoblot analyses confirmed p57KIP2 overexpression, construct size, and beta cell specificity. By immunocytochemistry, wild-type (WT) p57KIP2 displayed nuclear localization. In contrast, deletion of a putative NLS at amino acids 278-281 failed to access the nucleus. Unexpectedly, we identified a second downstream NLS at amino acids 312-316. Further analysis showed that each individual NLS is required for nuclear localization, but neither alone is sufficient. In summary, p57KIP2 contains a classical bipartite NLS characterized by 2 clusters of positively charged amino acids separated by a proline-rich linker region. Variants in the sequences encoding these 2 NLS sequences account for functional p57KIP2 loss and beta cell expansion seen in human disease.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Células Secretoras de Insulina , Sinais de Localização Nuclear , Humanos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Núcleo Celular/metabolismo , Células Secretoras de Insulina/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética
9.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686168

RESUMO

Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder, which manifests by overgrowth and predisposition to embryonal tumors. The evidence on the relationship between maternal complications such as HELLP (hemolysis, elevated liver enzymes, and low platelet count) and preeclampsia and the development of BWS in offspring is scarce. A comprehensive clinical evaluation, with genetic testing focused on screening for mutations in the CDKN1C gene, which is commonly associated with BWS, was conducted in a newborn diagnosed with BWS born to a mother with a history of preeclampsia and HELLP syndrome. The case study revealed typical clinical manifestations of BWS in the newborn, including hemihyperplasia, macroglossia, midfacial hypoplasia, omphalocele, and hypoglycemia. Surprisingly, the infant also exhibited fetal growth restriction, a finding less commonly observed in BWS cases. Genetic analysis, however, showed no mutations in the CDKN1C gene, which contrasts with the majority of BWS cases. This case report highlights the complex nature of BWS and its potential association with maternal complications such as preeclampsia and HELLP syndrome. The atypical presence of fetal growth restriction in the newborn and the absence of CDKN1C gene mutations have not been reported to date in BWS.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome HELLP , Pré-Eclâmpsia , Feminino , Gravidez , Lactente , Recém-Nascido , Humanos , Síndrome HELLP/diagnóstico , Síndrome HELLP/genética , Pré-Eclâmpsia/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Retardo do Crescimento Fetal/genética , Mães , Variação Genética , Inibidor de Quinase Dependente de Ciclina p57/genética
10.
Virchows Arch ; 483(5): 709-715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37695410

RESUMO

Hydatidiform moles (HMs) are divided into two types: partial hydatidiform mole (PHM) which is most often diandric monogynic triploid and complete hydatidiform mole (CHM) which is most often diploid androgenetic. Morphological features and p57 immunostaining are routinely used to distinguish both entities. Genetic analyses are required in challenging cases to determine the parental origin of the genome and ploidy. Some gestations cannot be accurately classified however. We report a case with atypical pathologic and genetic findings that correspond neither to CHM nor to PHM. Two populations of villi with divergent and discordant p57 expression were observed: morphologically normal p57 + villi and molar-like p57 discordant villi with p57 + stromal cells and p57 - cytotrophoblasts. Genotyping of DNA extracted from microdissected villi demonstrated that the conceptus was an androgenetic/biparental mosaic, originating from a zygote with triple paternal contribution, and that only the p57 - cytotrophoblasts were purely androgenetic, increasing the risk of neoplastic transformation.


Assuntos
Mola Hidatiforme , Neoplasias Uterinas , Gravidez , Feminino , Humanos , Neoplasias Uterinas/patologia , Mosaicismo , Diploide , Genótipo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Imuno-Histoquímica , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo
11.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298606

RESUMO

The general notion of complete hydatidiform moles is that most of them consist entirely of paternal DNA; hence, they do not express p57, a paternally imprinted gene. This forms the basis for the diagnosis of hydatidiform moles. There are about 38 paternally imprinted genes. The aim of this study is to determine whether other paternally imprinted genes could also assist in the diagnostic approach of hydatidiform moles. This study comprised of 29 complete moles, 15 partial moles and 17 non-molar abortuses. Immunohistochemical study using the antibodies of paternal-imprinted (RB1, TSSC3 and DOG1) and maternal-imprinted (DNMT1 and GATA3) genes were performed. The antibodies' immunoreactivity was evaluated on various placental cell types, namely cytotrophoblasts, syncytiotrophoblasts, villous stromal cells, extravillous intermediate trophoblasts and decidual cells. TSSC3 and RB1 expression were observed in all cases of partial moles and non-molar abortuses. In contrast, their expression in complete moles was identified in 31% (TSSC3) and 10.3% (RB1), respectively (p < 0.0001). DOG1 was consistently negative in all cell types in all cases. The expressions of maternally imprinted genes were seen in all cases, except for one case of complete mole where GATA3 was negative. Both TSSC3 and RB1 could serve as a useful adjunct to p57 for the discrimination of complete moles from partial moles and non-molar abortuses, especially in laboratories that lack comprehensive molecular service and in cases where p57 staining is equivocal.


Assuntos
Mola Hidatiforme , Toupeiras , Animais , Feminino , Humanos , Gravidez , Anticorpos/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/genética , Imuno-Histoquímica , Toupeiras/metabolismo , Placenta/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Cancer Med ; 12(13): 14413-14425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212524

RESUMO

BACKGROUND: Liver cancer is a highly malignant disease and the third leading cause of cancer death worldwide. Abnormal activation of PI3K/Akt signaling is common in cancer, but whether phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) plays a role in liver cancer is largely unexplored. METHODS: We determined the expression of PIK3R3 in liver cancer by using TCGA data and our clinical samples and knocked it down by siRNA or overexpressing it by the lentivirus vector system. We also investigated the function of PIK3R3 by colony formation, 5-Ethynyl-2-Deoxyuridine, flow cytometry assay, and subcutaneous xenograft model. The downstream of PIK3R3 was explored by RNA sequence and rescue assays. RESULTS: We found that PIK3R3 was significantly upregulated in liver cancer and correlated with prognosis. PIK3R3 promoted liver cancer growth in vitro and in vivo by controlling cell proliferation and cell cycle. RNA sequence revealed that hundreds of genes were dysregulated upon PIK3R3 knockdown in liver cancer cells. CDKN1C, a cyclin-dependent kinase inhibitor, was significantly upregulated by PIK3R3 knockdown, and CDKN1C siRNA rescued the impaired tumor cell growth. SMC1A was partially responsible for PIK3R3 regulated function, and SMC1A overexpression rescued the impaired tumor cell growth in liver cancer cells. Immunoprecipitation demonstrated there is indirect interaction between PIK3R3 and CNKN1C or SMC1A. Importantly, we verified that PIK3R3-activated Akt signaling determined the expression of CDKN1C and SMC1A, two downstream of PIK3R3 in liver cancer cells. CONCLUSION: PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDNK1C and SMC1A. Targeting PIK3R3 could be a promising treatment strategy for liver cancer that deserves further investigation.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
13.
Sci Rep ; 13(1): 5626, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024615

RESUMO

Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing.


Assuntos
Metilação de DNA , Inibidores de Histona Desacetilases , Animais , Camundongos , Impressão Genômica , Epigênese Genética , Cromatina , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo
14.
PLoS One ; 18(2): e0276838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791055

RESUMO

A cyclin-dependent kinase (CDK) inhibitor, p57Kip2, is an important molecule involved in bone development; p57Kip2-deficient (p57-/-) mice display neonatal lethality resulting from abnormal bone formation and cleft palate. The modulator 1α,25-dihydroxyvitamin D3 (l,25-(OH)2VD3) has shown the potential to suppress the proliferation and induce the differentiation of normal and tumor cells. The current study assessed the role of p57Kip2 in the 1,25-(OH)2VD3-regulated differentiation of osteoblasts because p57Kip2 is associated with the vitamin D receptor (VDR). Additionally, 1,25-(OH)2VD3 treatment increased p57KIP2 expression and induced the colocalization of p57KIP2 with VDR in the osteoblast nucleus. Primary p57-/- osteoblasts exhibited higher proliferation rates with Cdk activation than p57+/+ cells. A lower level of nodule mineralization was observed in p57-/- osteoblasts than in p57+/+ cells. In p57+/+ osteoblasts, 1,25-(OH)2VD3 upregulated the p57Kip2 and opn mRNA expression levels, while the opn expression levels were significantly decreased in p57-/- cells. The osteoclastogenesis assay performed using bone marrow cocultured with 1,25-(OH)2VD3-treated osteoblasts revealed a decreased efficiency of 1,25-(OH)2VD3-stimulated osteoclastogenesis in p57-/- cells. Based on these results, p57Kip2 might function as a mediator of 1,25-(OH)2VD3 signaling, thereby enabling sufficient VDR activation for osteoblast maturation.


Assuntos
Receptores de Calcitriol , Vitamina D , Animais , Camundongos , Diferenciação Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Osteoblastos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo
15.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633189

RESUMO

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Impressão Genômica , Fator de Crescimento Insulin-Like II , Células-Tronco Neurais , Neurogênese , Neurônios , Inibidor de Quinase Dependente de Ciclina p57/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurogênese/genética , Fator de Crescimento Insulin-Like II/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL
16.
Int J Hematol ; 117(1): 78-89, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280659

RESUMO

Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy. Here, we investigated whether an EZH1/2 dual inhibitor, DS-3201 (valemetostat), has antitumor effects on B cell ALL (B-ALL). DS-3201 inhibited growth of B-ALL cell lines more significantly and strongly than the EZH2-specific inhibitor EPZ-6438, and induced cell cycle arrest and apoptosis in vitro. RNA-seq analysis to determine the effect of DS-3201 on cell cycle arrest-related genes expressed by B-ALL cell lines showed that DS-3201 upregulated CDKN1C and TP53INP1. CRIPSR/Cas9 knockout confirmed that CDKN1C and TP53INP1 are direct targets of EZH1/2 and are responsible for the antitumor effects of DS-3201 against B-ALL. Furthermore, a patient-derived xenograft (PDX) mouse model showed that DS-3201 inhibited the growth of B-ALL harboring MLL-AF4 significantly. Thus, DS-3201 provides another option for treatment of B-ALL.


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Camundongos , Animais , Complexo Repressor Polycomb 2 , Regulação para Cima , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos/farmacologia , Pontos de Checagem do Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Proteínas de Transporte/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
17.
Epigenetics ; 18(1): 2088173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35770551

RESUMO

Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.


Assuntos
Metilação de DNA , Placenta , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Impressão Genômica , Placentação/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo
18.
J Obstet Gynaecol Res ; 48(12): 3077-3086, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098274

RESUMO

Hydatidiform moles are classified into complete hydatidiform moles (CHMs), which are androgenetic and diploid, and partial hydatidiform moles (PHM), which are triploid with two paternal chromosomes and one maternal chromosome. The incidence of gestational trophoblastic neoplasia differs substantially between CHM and PHM. However, they are occasionally difficult to diagnose. In this review, auxiliary and experimental methods based on cytogenetic features and advanced molecular detection techniques applied to the diagnosis and analysis of hydatidiform moles are summarized, including basic principles, characteristics, and clinical implications. Short tandem repeat polymorphism analysis is considered the gold standard for the genetic diagnosis of hydatidiform moles. In clinical settings, immunohistochemical analyses of p57KIP2 , an imprinted gene product, are widely used to differentiate CHMs from other conceptuses, including PHMs. Recently, new molecular genetic techniques, such as single nucleotide polymorphism arrays, have been applied to research on hydatidiform moles. In addition to insights from classical methods, such as chromosome analysis, recently developed approaches have yielded novel findings related to the mechanism underlying the development of androgenetic CHMs.


Assuntos
Doença Trofoblástica Gestacional , Mola Hidatiforme , Neoplasias Uterinas , Gravidez , Feminino , Humanos , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/análise , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Imuno-Histoquímica , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/genética
19.
Cell Death Dis ; 13(9): 805, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127346

RESUMO

F-box only protein 22 (FBXO22) is a key subunit of the Skp1-Cullin 1-F-box protein (SCF) E3 ubiquitin ligase complex. Little is known regarding its biological function and underlying molecular mechanisms in regulating cervical cancer (CC) progression. In this study, we aim to explore the role and mechanism of FBXO22 in CC progression. The correlation between FBXO22 and clinicopathological characteristics of CC was analyzed by tissue microarray. MTT, colony formation, flow cytometry, Western blotting, qRT-PCR, protein half-life, co-immunoprecipitation, ubiquitination, and xenograft experiments were performed to assess the functions of FBXO22 and potential molecular mechanisms of FBXO22-mediated malignant progression in CC. The expression of FBXO22 protein in CC tissues was higher than that in adjacent non-tumor cervical tissues. Notably, high expression of FBXO22 was significantly associated with high histology grades, positive lymph node metastasis, and poor outcomes in CC patients. Functionally, ectopic expression of FBXO22 promoted cell viability in vitro and induced tumor growth in vivo, while knockdown of FBXO22 exhibited opposite effects. In addition, overexpression of FBXO22 promoted G1/S phase progression and inhibited apoptosis in CC cells. Mechanistically, FBXO22 physically interacted with the cyclin-dependent kinase inhibitor p57Kip2 and subsequently mediated its ubiquitination and proteasomal degradation leading to tumor progression. FBXO22 protein level was found negatively associated with p57Kip2 protein levels in patient CC samples. FBXO22 promotes CC progression partly through regulating the ubiquitination and proteasomal degradation of p57Kip2. Our study indicates that FBXO22 might be a novel prognostic biomarker and therapeutic target for CC.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57 , Proteínas F-Box , Receptores Citoplasmáticos e Nucleares , Neoplasias do Colo do Útero , Animais , Biomarcadores/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitinação , Neoplasias do Colo do Útero/genética
20.
Mol Oncol ; 16(20): 3587-3605, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037042

RESUMO

Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft-tissue sarcoma of childhood. With 5-year survival rates among high-risk groups at &lt; 30%, new therapeutics are desperately needed. Previously, using a myoblast-based model of fusion-negative RMS (FN-RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN-RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN-RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo-Notch relationship. Here, we identify a HES1-YAP1-CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN-RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient-derived xenografts revealed the same pattern of HES1-YAP1-CDKN1C expression. Treatment of FN-RMS cells in vitro with the recently described HES1 small-molecule inhibitor, JI130, limited FN-RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1-directed shRNA or JI130 dosing impaired FN-RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN-RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS-MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN-RMS.


Assuntos
Proteômica , Rabdomiossarcoma , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação Neoplásica da Expressão Gênica , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , RNA Interferente Pequeno , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA