Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.362
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38950842

RESUMO

Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.


Assuntos
Cocaína , Camundongos Endogâmicos C57BL , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Reforço Psicológico , Autoadministração , Animais , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/efeitos dos fármacos , Camundongos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Agonistas Muscarínicos/farmacologia , Condicionamento Operante/efeitos dos fármacos
2.
Physiol Behav ; 282: 114599, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823754

RESUMO

Cocaine addiction is the third largest cause of overdose-related deaths in the United States. Research investigating therapeutic targets for cocaine reward processes is key to combating this issue. The neuropeptide oxytocin (OXT) has been shown to reduce cocaine reward processes, though specific mechanisms are not understood. This study examines the effect of intra-dorsal hippocampal (DH) OXT on the expression of cocaine context associations using a conditioned place preference (CPP) paradigm. In this paradigm, one of two visually distinct chambers is paired with a drug. With repeated pairings, control animals display preference for the drug-associated context by spending more time in that context at test. In the present study, four conditioning days took place where male and female rats were injected with either cocaine or saline and placed into the corresponding chamber. On test day, rats received infusions of OXT or saline (VEH) into the DH and were allowed access to both chambers. The results show that while VEH-infused rats displayed cocaine CPP, OXT-infused rats did not prefer the cocaine-paired chamber. These findings implicate the DH as necessary in the mechanism by which OXT acts to block the expression of cocaine-context associations, providing insight into how OXT may exert its therapeutic effect in cocaine reward processes.


Assuntos
Cocaína , Hipocampo , Ocitocina , Animais , Ocitocina/farmacologia , Cocaína/farmacologia , Masculino , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Inibidores da Captação de Dopamina/farmacologia , Ratos Sprague-Dawley , Recompensa
3.
Dev Psychobiol ; 66(6): e22514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922890

RESUMO

Repeated exposure to abused drugs leads to reorganizing synaptic connections in the brain, playing a pivotal role in the relapse process. Additionally, recent research has highlighted the impact of parental drug exposure before gestation on subsequent generations. This study aimed to explore the influence of parental morphine exposure 10 days prior to pregnancy on drug-induced locomotor sensitization. Adult male and female Wistar rats were categorized into morphine-exposed and control groups. Ten days after their last treatment, they were mated, and their male offspring underwent morphine, methamphetamine, cocaine, and nicotine-induced locomotor sensitization tests. The results indicated increased locomotor activity in both groups after drug exposure, although the changes were attenuated in morphine and cocaine sensitization among the offspring of morphine-exposed parents (MEPs). Western blotting analysis revealed altered levels of D2 dopamine receptors (D2DRs) in the prefrontal cortex and nucleus accumbens of the offspring from MEPs. Remarkably, despite not having direct in utero drug exposure, these offspring exhibited molecular alterations affecting morphine and cocaine-induced sensitization. The diminished sensitization to morphine and cocaine suggested the development of a tolerance phenotype in these offspring. The changes in D2DR levels in the brain might play a role in these adaptations.


Assuntos
Cocaína , Locomoção , Morfina , Núcleo Accumbens , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Receptores de Dopamina D2 , Animais , Feminino , Morfina/farmacologia , Morfina/administração & dosagem , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Entorpecentes/farmacologia , Exposição Paterna/efeitos adversos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
4.
Biomolecules ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927116

RESUMO

Modafinil analogs with either a sulfoxide or sulfide moiety have improved binding affinities at the human dopamine transporter (hDAT) compared to modafinil, with lead sulfoxide-substituted analogs showing characteristics of atypical inhibition (e.g., JJC8-091). Interestingly, the only distinction between sulfoxide and sulfide substitution is the presence of one additional oxygen atom. To elucidate why such a subtle difference in ligand structure can result in different typical or atypical profiles, we investigated two pairs of analogs. Our quantum mechanical calculations revealed a more negatively charged distribution of the electrostatic potential surface of the sulfoxide substitution. Using molecular dynamics simulations, we demonstrated that sulfoxide-substituted modafinil analogs have a propensity to attract more water into the binding pocket. They also exhibited a tendency to dissociate from Asp79 and form a new interaction with Asp421, consequently promoting an inward-facing conformation of hDAT. In contrast, sulfide-substituted analogs did not display these effects. These findings elucidate the structural basis of the activity cliff observed with modafinil analogs and also enhance our understanding of the functionally relevant conformational spectrum of hDAT.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Modafinila , Simulação de Dinâmica Molecular , Modafinila/química , Modafinila/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Sítios de Ligação , Inibidores da Captação de Dopamina/química , Inibidores da Captação de Dopamina/farmacologia , Relação Estrutura-Atividade , Ligação Proteica
5.
Addict Biol ; 29(5): e13397, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38711205

RESUMO

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Assuntos
Cocaína , Comportamento de Procura de Droga , Neurônios , Núcleo Accumbens , Autoadministração , Animais , Núcleo Accumbens/efeitos dos fármacos , Cocaína/farmacologia , Masculino , Feminino , Ratos , Comportamento de Procura de Droga/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Recompensa , Inibidores da Captação de Dopamina/farmacologia , Reforço Psicológico , Receptores de Dopamina D1 , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Ratos Sprague-Dawley , Córtex Pré-Frontal/efeitos dos fármacos
6.
Neuropsychopharmacology ; 49(9): 1459-1467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38664549

RESUMO

Individuals with cocaine addiction can experience many craving episodes and subsequent relapses, which represents the main obstacle to recovery. Craving is often favored when abstinent individuals ingest a small dose of cocaine, encounter cues associated with drug use or are exposed to stressors. Using a cocaine-primed reinstatement model in rat, we recently showed that cocaine-conditioned interoceptive cues can be extinguished with repeated cocaine priming in the absence of drug reinforcement, a phenomenon we called extinction of cocaine priming. Here, we applied a large-scale c-Fos brain mapping approach following extinction of cocaine priming in male rats to identify brain regions implicated in processing the conditioned interoceptive stimuli of cocaine priming. We found that cocaine-primed reinstatement is associated with increased c-Fos expression in key brain regions (e.g., dorsal and ventral striatum, several prefrontal areas and insular cortex), while its extinction mostly disengages them. Moreover, while reinstatement behavior was correlated with insular and accumbal activation, extinction of cocaine priming implicated parts of the ventral pallidum, the mediodorsal thalamus and the median raphe. These brain patterns of activation and inhibition suggest that after repeated priming, interoceptive signals lose their conditioned discriminative properties and that action-outcome associations systems are mobilized in search for new contingencies, a brain state that may predispose to rapid relapse.


Assuntos
Mapeamento Encefálico , Encéfalo , Cocaína , Extinção Psicológica , Proteínas Proto-Oncogênicas c-fos , Animais , Masculino , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Cocaína/farmacologia , Cocaína/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Autoadministração , Sinais (Psicologia)
7.
Behav Pharmacol ; 35(4): 147-155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651979

RESUMO

Previous exposure to drugs of abuse produces impairments in studies of reversal learning, delay discounting and response inhibition tasks. While these studies contribute to the understanding of normal decision-making and how it is impaired by drugs of abuse, they do not fully capture how decision-making impacts the ability to delay gratification for greater long-term benefit. To address this issue, we used a diminishing returns task to study decision-making in rats that had previously self-administered cocaine. This task was designed to test the ability of the rat to choose to delay gratification in the short-term to obtain more reward over the course of the entire behavioral session. Rats were presented with two choices. One choice had a fixed amount of time delay needed to obtain reward [i.e. fixed delay (FD)], while the other choice had a progressive delay (PD) that started at 0 s and progressively increased by 1 s each time the PD option was selected. During the 'reset' variation of the task, rats could choose the FD option to reset the time delay associated with the PD option. Consistent with previous results, we found that prior cocaine exposure reduced rats' overall preference for the PD option in post-task reversal testing during 'no-reset' sessions, suggesting that cocaine exposure made rats more sensitive to the increasing delay of the PD option. Surprisingly, however, we found that rats that had self-administered cocaine 1-month prior, adapted behavior during 'reset' sessions by delaying gratification to obtain more reward in the long run similar to control rats.


Assuntos
Cocaína , Desvalorização pelo Atraso , Recompensa , Autoadministração , Animais , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Desvalorização pelo Atraso/efeitos dos fármacos , Ratos , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Tomada de Decisões/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/psicologia , Ratos Long-Evans , Fatores de Tempo
8.
Neuropsychopharmacology ; 49(8): 1309-1317, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38429498

RESUMO

People with depression and other neuropsychiatric disorders can experience motivational dysfunctions such as fatigue and anergia, which involve reduced exertion of effort in goal-directed activity. To model effort-related motivational dysfunction, effort-based choice tasks can be used, in which rats can select between obtaining a preferred reinforcer by high exertion of effort vs. a low effort/less preferred option. Preclinical data indicate that dopamine transport (DAT) inhibitors can reverse pharmacologically-induced low-effort biases and increase selection of high-effort options in effort-based choice tasks. Although classical DAT blockers like cocaine can produce undesirable effects such as liability for misuse and psychotic reactions, not all DAT inhibitors have the same neurochemical profile. The current study characterized the effort-related effects of novel DAT inhibitors that are modafinil analogs and have a range of binding profiles and neurochemical actions (JJC8-088, JJC8-089, RDS3-094, and JJC8-091) by using two different effort-related choice behavior tasks in male Sprague-Dawley rats. JJC8-088, JJC8-089, and RDS3-094 significantly reversed the low-effort bias induced by the VMAT-2 inhibitor tetrabenazine, increasing selection of high-effort fixed ratio 5 lever pressing vs. chow intake. In addition, JJC8-089 reversed the effects of tetrabenazine in female rats. JJC8-088 and JJC8-089 also increased selection of high-effort progressive ratio responding in a choice task. However, JJC8-091 failed to produce these outcomes, potentially due to its unique pharmacological profile (i.e., binding to an occluded conformation of DAT). Assessment of a broad range of DAT inhibitors with different neurochemical characteristics may lead to the identification of compounds that are useful for treating motivational dysfunction in humans.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Motivação , Ratos Sprague-Dawley , Animais , Motivação/efeitos dos fármacos , Motivação/fisiologia , Masculino , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Feminino , Ratos , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Modafinila/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia
9.
Eur J Neurosci ; 59(10): 2436-2449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444104

RESUMO

Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Dopamina , Núcleo Accumbens , Receptores sigma , Animais , Masculino , Ratos , Compostos Benzidrílicos/farmacologia , Cocaína/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Inibidores da Captação de Dopamina/farmacologia , Microdiálise/métodos , Modafinila/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Piperidinas/farmacologia , Ratos Sprague-Dawley , Receptores sigma/antagonistas & inibidores
10.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508714

RESUMO

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.


Assuntos
Cocaína , Corpo Estriado , Camundongos Knockout , Plasticidade Neuronal , Animais , Cocaína/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Camundongos , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Camundongos Endogâmicos C57BL , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Feminino , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Excitabilidade Cortical/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
11.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38346894

RESUMO

When rats are given discrete choices between social interactions with a peer and opioid or psychostimulant drugs, they choose social interaction, even after extensive drug self-administration experience. Studies show that like drug and nondrug food reinforcers, social interaction is an operant reinforcer and induces dopamine release. However, these studies were conducted with same-sex peers. We examined if peer sex influences operant social interaction and the role of estrous cycle and striatal dopamine in same- versus opposite-sex social interaction. We trained male and female rats (n = 13 responders/12 peers) to lever-press (fixed-ratio 1 [FR1] schedule) for 15 s access to a same- or opposite-sex peer for 16 d (8 d/sex) while tracking females' estrous cycle. Next, we transfected GRAB-DA2m and implanted optic fibers into nucleus accumbens (NAc) core and dorsomedial striatum (DMS). We then retrained the rats for 15 s social interaction (FR1 schedule) for 16 d (8 d/sex) and recorded striatal dopamine during operant responding for a peer for 8 d (4 d/sex). Finally, we assessed economic demand by manipulating FR requirements for a peer (10 d/sex). In male, but not female rats, operant responding was higher for the opposite-sex peer. Female's estrous cycle fluctuations had no effect on operant social interaction. Striatal dopamine signals for operant social interaction were dependent on the peer's sex and striatal region (NAc core vs DMS). Results indicate that estrous cycle fluctuations did not influence operant social interaction and that NAc core and DMS dopamine activity reflect sex-dependent features of volitional social interaction.


Assuntos
Condicionamento Operante , Dopamina , Ratos , Animais , Masculino , Feminino , Dopamina/farmacologia , Interação Social , Corpo Estriado , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens
12.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256113

RESUMO

Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.


Assuntos
Compostos Benzidrílicos , Transtornos do Espectro Alcoólico Fetal , Interação Social , Humanos , Adolescente , Criança , Gravidez , Feminino , Masculino , Animais , Ratos , Etanol/efeitos adversos , Inibidores da Captação de Dopamina , Dopamina
13.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069180

RESUMO

Repeated cocaine exposure produces an enhanced locomotor response (sensitization) paralleled by biological adaptations in the brain. Previous studies demonstrated region-specific responsivity of adenosine monophosphate-activated protein kinase (AMPK) to repeated cocaine exposure. AMPK maintains cellular energy homeostasis at the organismal and cellular levels. Here, our objective was to quantify changes in phosphorylated (active) and total AMPK in the cytosol and synaptosome of the medial prefrontal cortex, nucleus accumbens, and dorsal striatum following acute or sensitizing cocaine injections. Brain region and cellular compartment selective changes in AMPK and pAMPK were found with some differences associated with acute withdrawal versus ongoing cocaine treatment. Our additional goal was to determine the behavioral and molecular effects of pretreatment with the indirect AMPK activator metformin. Metformin potentiated the locomotor activating effects of acute cocaine but blocked the development of sensitization. Sex differences largely obscured any protein-level treatment group effects, although pAMPK in the NAc shell cytosol was surprisingly reduced by metformin in rats receiving repeated cocaine. The rationale for these studies was to inform our understanding of AMPK activation dynamics in subcellular compartments and provide additional support for repurposing metformin for treating cocaine use disorder.


Assuntos
Cocaína , Metformina , Feminino , Ratos , Animais , Masculino , Inibidores da Captação de Dopamina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Monofosfato de Adenosina/metabolismo , Ratos Sprague-Dawley , Núcleo Accumbens/metabolismo
15.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003664

RESUMO

Dopamine signaling in the adult ventral forebrain regulates behavior, stress response, and memory formation and in neurodevelopment regulates neural differentiation and cell migration. Excessive dopamine levels, including those due to cocaine use in utero and in adults, could lead to long-term adverse consequences. The mechanisms underlying both homeostatic and pathological changes remain unclear, in part due to the diverse cellular responses elicited by dopamine and the reliance on animal models that exhibit species-specific differences in dopamine signaling. In this study, we use the human-derived ventral forebrain organoid model of Xiang-Tanaka and characterize their response to cocaine or dopamine. We explore dosing regimens of dopamine or cocaine to simulate acute or chronic exposure. We then use calcium imaging, cAMP imaging, and bulk RNA-sequencing to measure responses to cocaine or dopamine exposure. We observe an upregulation of inflammatory pathways in addition to indicators of oxidative stress following exposure. Using inhibitors of reactive oxygen species (ROS), we then show ROS to be necessary for multiple transcriptional responses of cocaine exposure. These results highlight novel response pathways and validate the potential of cerebral organoids as in vitro human models for studying complex biological processes in the brain.


Assuntos
Cocaína , Animais , Humanos , Cocaína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Organoides/metabolismo
17.
ACS Chem Neurosci ; 14(15): 2802-2810, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466616

RESUMO

Understanding the neurochemistry underlying sex differences in psychostimulant use disorders (PSUD) is essential for developing related therapeutics. Many psychostimulants, like cocaine, inhibit the dopamine transporter (DAT), which is largely thought to account for actions related to their misuse and dependence. Cocaine-like, typical DAT inhibitors preferentially bind DAT in an outward-facing conformation, while atypical DAT inhibitors, like modafinil, prefer a more inward-facing DAT conformation. Modafinil and R-modafinil have emerged as potential therapeutic options for selected populations of individuals affected by PSUD. In addition, analogs of modafinil (JJC8-088 and JJC8-091) with different pharmacological profiles have been explored as potential PSUD medications in preclinical models. In this work, we employ fast scan cyclic voltammetry (FSCV) to probe nucleus accumbens shell (NAS) dopamine (DA) dynamics in C57BL/6 male and female mice. We find that cocaine slowed DA clearance in both male and female mice but produced more robust increases in evoked NAS DA in female mice. R-Modafinil produced mild increases in evoked NAS DA and slowed DA clearance across the sexes. The modafinil analog JJC8-088, a typical DAT inhibitor, produced increases in evoked NAS DA in female and male mice. Finally, JJC8-091, an atypical DAT inhibitor, produced limited increases in evoked NAS DA and slowed DA clearance in both sexes. In this work we begin to tease out how sex differences may alter the effects of DAT targeting and highlight how this may help focus research toward effective treatment options for PSUD.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Feminino , Camundongos , Masculino , Animais , Modafinila/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Cocaína/metabolismo , Inibidores da Captação de Dopamina/farmacologia
19.
ACS Chem Neurosci ; 14(14): 2527-2536, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37406364

RESUMO

α-Pyrrolidinohexiophenone (α-PHP) is the one-carbon unit α-extended homolog of the better-known and widely abused synthetic cathinone central stimulant α-PVP ("flakka"); both are now U.S. Schedule I controlled substances. Structurally, α-PVP and α-PHP possess a common terminal N-pyrrolidine moiety and differ only with respect to the length of their α-alkyl chain. Using a synaptosomal assay, we previously reported that α-PHP is at least as potent as α-PVP as a dopamine transporter (DAT) reuptake inhibitor. A systematic structure-activity study of synthetic cathinones (e.g., α-PHP) as DAT reuptake inhibitors (i.e., transport blockers), a mechanism thought responsible for their abuse liability, has yet to be conducted. Here, we examined a series of 4-substituted α-PHP analogues and found that, with one exception, all behaved as relatively (28- to >300-fold) selective DAT versus serotonin transporter (SERT) reuptake inhibitors with DAT inhibition potencies of most falling within a very narrow (i.e., <3-fold) range. The 4-CF3 analogue of α-PHP was a confirmed "outlier" in that it was at least 80-fold less potent than the other analogues and displayed reduced (i.e., no) DAT vs SERT selectivity. Consideration of various physicochemical properties of the CF3 group, relative to that of the other substituents involved here, provided relatively little insight. Unlike with DAT-releasing agents, as previously reported by us, a QSAR study was precluded because of the limited range of empirical results (with the exception of the 4-CF3 analogue) for DAT reuptake inhibition.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Catinona Sintética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/química , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/química , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina
20.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446929

RESUMO

Psychostimulant use disorders (PSUD) affect a growing number of men and women and exert sizable public health and economic burdens on our global society. Notably, there are some sex differences in the onset of dependence, relapse rates, and treatment success with PSUD observed in preclinical and clinical studies. The subtle sex differences observed in the behavioral aspects of PSUD may be associated with differences in the neurochemistry of the dopaminergic system between sexes. Preclinically, psychostimulants have been shown to increase synaptic dopamine (DA) levels and may downregulate the dopamine transporter (DAT). This effect is greatest in females during the high estradiol phase of the estrous cycle. Interestingly, women have been shown to be more likely to begin drug use at younger ages and report higher levels of desire to use cocaine than males. Even though there is currently no FDA-approved medication, modafinil, a DAT inhibitor approved for use in the treatment of narcolepsy and sleep disorders, has shown promise in the treatment of PSUD among specific populations of affected individuals. In this review, we highlight the therapeutic potential of modafinil and other atypical DAT inhibitors focusing on the lack of sex differences in the actions of these agents.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Feminino , Humanos , Masculino , Inibidores da Captação de Dopamina/farmacologia , Modafinila/uso terapêutico , Modafinila/farmacologia , Caracteres Sexuais , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Dopamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA