Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.246
Filtrar
1.
Toxicol Lett ; 396: 28-33, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642675

RESUMO

The aerotoxic syndrome has been associated with exposure to tricresyl phosphate (TCP), which is used as additive in hydraulic fluids and engine lubricants. The toxic metabolite 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP) is formed from the TCP isomer tri-ortho-cresyl phosphate (TOCP) in vivo and is known to react with the active site serine in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) resulting in the inhibition of the enzymes. Previous in vitro studies showed pronounced species differences in the inhibition kinetics of cholinesterases by organophosphorus compounds (OP), which must be considered in the development of relevant animal models for the investigation of OP poisoning and the aerotoxic syndrome. The present study was designed to investigate the inhibition kinetics of human, Cynomolgus monkey, pig, mini pig, guinea pig, mouse, and rat AChE as well as BChE by CBDP under standardized conditions. There were similar rate constants for the inhibition (ki) of human, Cynomolgus monkey and mouse AChE by CBDP. In contrast, the ki values obtained for guinea pig, mini pig, pig, and rat AChE were 2.8- to 5.9-fold lower than that of human AChE. The results of the present study confirmed CBDP as one of the most potent inhibitors of human BChE, indicating a ki value of 3.24 ± 0.33 ×108M-1min-1, which was about 1,140-fold higher than that of human AChE. Accordingly, a markedly more pronounced inhibition rate of BChE from the species guinea pig, mini pig, pig, rat, Cynomolgus monkey, and mouse by CBDP was found as compared to those of AChE from the respective sources, indicating 2.0- to 89.6-fold higher ki values.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Macaca fascicularis , Compostos Organofosforados , Especificidade da Espécie , Porco Miniatura , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Cobaias , Camundongos , Ratos , Humanos , Compostos Organofosforados/toxicidade , Cinética , Suínos
2.
Chem Biol Interact ; 395: 110973, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574837

RESUMO

The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.


Assuntos
Agentes Neurotóxicos , Compostos Organofosforados , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Contramedidas Médicas , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química
3.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
4.
Arh Hig Rada Toksikol ; 75(1): 76-80, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548375

RESUMO

Glyphosate has remained the leading herbicide on the global market to date, despite the continuous debate between consumers, scientific community, and regulatory agencies over its carcinogenicity, genotoxicity, environmental persistence, and the role in the development of neurodegenerative disorders. Chemically, glyphosate belongs to a large family of organophosphorus pesticides, which exert a neurotoxic effect by inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes of the cholinergic system essential for maintaining neurotransmission. Although research shows that glyphosate is a weak cholinesterase inhibitor in fish and mammals compared to other OP compounds, no conclusive data exist concerning the inhibition of human AChE and BChE. In our study we analysed its inhibitory potency on human AChE and BChE, by establishing its IC50 and reversible inhibition in terms of dissociation inhibition constants. Glyphosate concentration of 40 mmol/L caused near total inhibition of enzyme activity (approx. 10 % activity remaining). Inhibition dissociation constants (K i) of glyphosate-AChE and -BChE complexes were 28.4±2.7 mmol/L and 19.3±1.8 mmol/L, respectively. In conclusion, glyphosate shows a slight binding preference for BChE but exhibits inhibition only in a high concentration range. Our results are in line with studies reporting that its neurotoxic effect is not primarily linked to the cholinergic system.


Assuntos
Butirilcolinesterase , Praguicidas , Animais , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Glifosato , Compostos Organofosforados , Praguicidas/toxicidade , Inibidores da Colinesterase/toxicidade , Exposição Ambiental , Mamíferos/metabolismo
5.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
6.
Neurotoxicology ; 101: 16-25, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224782

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are useful markers to assess the effects of exposure to anticholinesterase insecticides (Anti-AChE). In addition, lymphocyte neuropathy target esterase (LNTE) has been used as biomarker of neuropathic organophosphate compounds (OPs). Thus, this study evaluates the main types of circulating biomarkers related to the cholinergic system and to the neuropathy induced by OPs in standardized human samples. To achieve this objective, total protein of human plasma, erythrocytes and lymphocytes were first standardized, and then AChE, BChE and LNTE activities in human blood were evaluated in the presence of inhibitors. The acceptance criteria of the regulatory agency were respected with coefficients of regression of curves of 0.9972 for cholinesterase and 0.9956 for LNTE analyses. The wavelength established to perform cholinesterase assay was 450 nm and the time of incubation of the enzymes with inhibitors was 30 min. Differences were observed among the IC50 values regarding the in vitro inhibition of AChE, BChE and LNTE in the presence of OPs. In conclusion, the procedures demonstrated by the present work were simple, fast, inexpensive, sensitive, easy to be replicated and suitable to make conclusions about the neurotoxicity induced by Anti-AChE and neuropathic OPs.


Assuntos
Inseticidas , Síndromes Neurotóxicas , Humanos , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Compostos Organofosforados/toxicidade , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia
7.
Int J Nanomedicine ; 19: 307-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229703

RESUMO

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Assuntos
Inibidores da Colinesterase , Reativadores da Colinesterase , Paraoxon , Compostos de Pralidoxima , Animais , Camundongos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Oximas/farmacologia , Oximas/química , Paraoxon/toxicidade , Paraoxon/química , Compostos de Pralidoxima/química , Compostos de Pralidoxima/farmacologia
8.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37950699

RESUMO

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Assuntos
Reativadores da Colinesterase , Humanos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Acetilcolinesterase/metabolismo , Células Hep G2 , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Oximas/química , Antídotos/farmacologia , Organofosfatos/toxicidade , Estresse Oxidativo , Carbono , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
9.
Vet Clin Pathol ; 52(4): 646-653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914538

RESUMO

BACKGROUND: Cholinesterase is a biomarker for poisonings by anticholinesterase agents, but its reference values are scarce, and possible interaction with collars containing parasiticides has not been studied. OBJECTIVES: We aimed to evaluate the serum cholinesterase activity of healthy dogs without a history of contact with anticholinesterase agents and healthy animals exposed to commercial collars containing organophosphate. METHODS: Ninety-nine dogs were used and included healthy animals without recent exposure to anticholinesterase agents and healthy animals previously exposed to diazinon collars. Serum quantification of the enzyme butyrylcholinesterase (BuchE) through spectrophotometry was conducted on all samples. In experiment 1, BuchE activity was quantified at time 0 and 7 days after, a time when the samples were kept at -18°C. In experiment 2, sampling times were 0, 7, 14, 21, 28, and 56 days. RESULTS: Time 0 values were 4622.38 ± 1311.53 U/L. After 7 days, a significant decay was observed, with a mean of 3934.45 ± 1430.45 U/L. Spearman's test was performed, finding a weak correlation between ALT, creatinine, total plasma proteins, age, weight, red blood cells, platelets, leukocytes, and BuchE activities. In experiment 2, the mean at time 0 was 4753 ± 454.8 U/L. With exposure to the collar, there was a decay of up to 93% after 14 days. CONCLUSIONS: Normality values of serum BuchE in healthy dogs without a history of exposure to anticholinesterase agents were 4360.8-4883.96 U/L. Freezing serum caused a decrease in BuchE activity. Exposure to commercial collars containing diazinon also reduced BuchE activity without clinical signs, indicating that previously exposed animals should be evaluated carefully.


Assuntos
Butirilcolinesterase , Diazinon , Cães , Animais , Diazinon/toxicidade , Inibidores da Colinesterase/toxicidade , Organofosfatos
10.
Environ Sci Pollut Res Int ; 30(42): 96138-96146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566323

RESUMO

Acetylcholinesterase (AChE) inhibitors are an important class of neuroactive chemicals that are often detected in aquatic and terrestrial environments. The correct functionality of the AChE enzyme is linked to many important physiological processes such as locomotion and respiration. Consequently, it is necessary to develop new analytical strategies to identify harmful AChE inhibitors in the environment. It has been shown that mixture effects and oxidative stress may jeopardize the application of in vivo assays for the identification of AChE inhibitors in the environment. To confirm that in vivo AChE assays can be successfully applied when dealing with complex mixtures, an extract from river water impacted by non-treated wastewater was bio-tested using the acute toxicity fish embryo test (FET) and AChE inhibition assay with zebrafish. The zebrafish FET showed high sensitivity for the extract (LC10 = relative extraction factor 2.8) and we observed a significant inhibition of the AChE (40%, p < 0.01) after 4-day exposure. Furthermore, the extract was chromatographically fractionated into a total of 26 fractions to dilute the mixture effect and separate compounds according to their physico-chemical properties. As expected, non-specific acute effects (i.e., mortality) disappeared or evenly spread among the fractions, while AChE inhibition was still detected in five fractions. Chemical analysis did not detect any known AChE inhibitors in these active fractions. These results confirm that the AChE assay with Danio rerio can be applied for the detection of neuroactive effects induced in complex environmental samples, but also, they highlight the need to increase analytical and identification techniques for the detection of neurotoxic substances.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Acetilcolinesterase , Rios/química , Sérvia , Poluentes Químicos da Água/análise , Inibidores da Colinesterase/toxicidade , Embrião não Mamífero
11.
Toxicol Mech Methods ; 33(9): 732-740, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537757

RESUMO

The carbamate pyridostigmine bromide (PB) is the only fielded pharmacological prophylaxis for military use against nerve agents. Previous studies have shown differences in the PB-pretreatment efficacy for various nerve agents and in the influence of post-exposure treatment with common antidotes. In the present study, the aim was to evaluate the possibility of using an ex vivo rat precision-cut lung slice model to determine the impact of PB pretreatment on VX-induced bronchoconstriction. In addition, the efficacy of post-exposure treatment with atropine sulfate following PB-prophylaxis was investigated.Bronchoconstriction was induced by electric-field stimulation and was significantly aggravated by 10 µM PB. Airway recovery was decreased by both 1 and 10 µM PB. Evaluation of acetylcholineesterese inhibition by PB showed that the lower concentration met the clinical criteria of residual enzyme activity while the higher concentration completely inhibited the activity. Exposure to VX with or without pretreatment demonstrated similar contractions. However, VX-incubation following pretreatment caused decreased airway relaxation compared to pretreatment alone. Atropine treatment following PB- and VX-exposure significantly decreased the maximum airway contraction and increased the relaxation.In conclusion, no beneficial effect of PB-prophylaxis on VX-induced contractions was observed. The atropine efficacy to relax airways was significant demonstrating the importance of efficient post-exposure therapeutics to protect against the life-threatening respiratory contractions.


Assuntos
Agentes Neurotóxicos , Brometo de Piridostigmina , Ratos , Animais , Brometo de Piridostigmina/farmacologia , Agentes Neurotóxicos/toxicidade , Atropina/farmacologia , Pulmão , Inibidores da Colinesterase/toxicidade
12.
Toxicol Appl Pharmacol ; 475: 116646, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517785

RESUMO

Pre-administration of huperzine A (Hup A) was validated to prevent poisoning from exposure to nerve agents (NAs) by reversibly inhibiting acetylcholinesterase (AChE). However, like the currently commonly used reversible inhibitors, Hup A has a short half-life and is unable to produce a long-term preventative effect. To extend the protective time of Hup A against NAs, 42 derivatives with a CN bond were designed based on the structure of Hup A in this study. All designed derivatives showed good binding capability with AChE via molecular docking. Six compounds (H3, H4, H11, H14, H16, and H25) with representative structures were selected for synthesis by Schiff base reaction, and their structures were stable. The modified Ellman's method showed the six compounds concentration-dependently inhibited AChE, and the half maximal inhibitory concentration (IC50) were higher than that of Hup A. Pretreatment of AChE with the derivatives significantly increased the IC50 of soman. In vivo experiments demonstrated H3, H4, H14, H16, and H25 had longer protective capacities against 1 × LD95 soman-induced death in mice than Hup A. The 12 h protective index showed that the protective ratios of H3, H4, H14 and H16 were 2.31, 1.85, 2.23 and 1.99 respectively, better than that of Hup A. The extended protection of the derivatives against soman may be explained by their transformation to Hup A in vivo. Furthermore, all six compounds showed lower acute oral toxicity than Hup A. Overall, our study provided an optional strategy to acquire pretreatment agents for NAs with extended action and low toxicity.


Assuntos
Agentes Neurotóxicos , Soman , Camundongos , Animais , Soman/toxicidade , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular
13.
J Med Toxicol ; 19(4): 352-361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523031

RESUMO

INTRODUCTION: Organophosphates (OPs) are a major public health problem worldwide due to ease of access and high toxicity lacking effective biomarkers and treatment. Cholinergic agents such as OPs and carbamates are responsible for many pesticide-related deaths. While the inhibition of AChE is thought to be the main mechanism of injury, there are other important pathways that contribute to the overall toxicity of OPs such as mitochondrial dysfunction. An existing gap in OP poisoning are biomarkers to gauge severity and prognosis. Cell-free DNA (cfDNA) are novel biomarkers that have gained increased attention as a sensitive biomarker of disease with novel use in acute poisoning. This study investigates alterations in cerebral mitochondrial function in a rodent model of chlorpyrifos poisoning with the use of cfDNA as a potential biomarker. METHODS: Twenty rodents were divided into two groups: Control (n = 10) and Chlorpyrifos (n = 10). Chlorpyrifos was administered through the venous femoral line with a Harvard Apparatus 11 Elite Syringe pump (Holliston, MA, USA) at 2 mg/kg. Animals were randomized to receive chlorpyrifos versus the vehicle (10% DMSO) for 60 min which would realistically present an acute exposure with continued absorption. At the end of the exposure (60 min), isolated mitochondria were measured for mitochondrial respiration along with measures of acetylcholinesterase activity, cfDNA, cytokines and western blot. RESULTS: The Chlorpyrifos group showed a significant decrease in heart rate but no change in the blood pressure. There was a significant increase in bulk cfDNA concentrations and overall decrease in mitochondrial respiration from brain tissue obtained from animals in the Chlorpyrifos group when compared to the Control group with no difference in acetylcholinesterase activity. In addition, there was a significant increase in both IL-2 and IL-12 in the Chlorpyrifos group. CONCLUSIONS: In our study, we found that the total cfDNA concentration may serve as a more accurate biomarker of OP exposure compared to acetylcholinesterase activity. In addition, there was an overall decrease in cerebral mitochondrial function in the Chlorpyrifos group when compared to the Control group.


Assuntos
Clorpirifos , Animais , Acetilcolinesterase/metabolismo , Biomarcadores , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Mitocôndrias/metabolismo , Roedores/metabolismo
14.
Toxicol Mech Methods ; 33(7): 590-595, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051629

RESUMO

Organophosphorus nerve agents pose a global threat to both military personnel and civilian population, because of their high acute toxicity and insufficient medical countermeasures. Commonly used drugs could ameliorate the intoxication and overall medical outcomes. In this study, we tested the drugs able to alleviate the symptoms of Alzheimer's disease (donepezil, huperzine A, memantine) or Parkinson's disease (procyclidine). They were administered to mice before soman intoxication in terms of their: i) protection potential against soman toxicity and ii) influence on post-exposure therapy consisting of atropine and asoxime (also known as oxime HI-6). Their pretreatment effect was not significant, when administered alone, but in combination (acetylcholinesterase inhibitor such as denepezil or huperzine A with NMDA antagonist such as memantine or procyclidine) they lowered the soman toxicity more than twice. These combinations also positively influenced the efficacy of post-exposure treatment in a similar fashion; the combinations increased the therapeutic effectiveness of antidotal treatment. In conclusion, the most effective combination - huperzine A and procyclidine - lowered the toxicity three times and improved the post-exposure therapy efficacy more than six times. These results are unprecedented in the published literature.


Assuntos
Venenos , Soman , Camundongos , Animais , Inibidores da Colinesterase/toxicidade , Soman/toxicidade , Acetilcolinesterase/metabolismo , Receptores de N-Metil-D-Aspartato , Prociclidina/farmacologia , Memantina/uso terapêutico , Taxa de Sobrevida , Compostos de Piridínio/farmacologia , Antídotos/uso terapêutico , Atropina/uso terapêutico , Atropina/farmacologia , Oximas/uso terapêutico , Oximas/farmacologia
15.
Chem Biol Interact ; 375: 110425, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36858108

RESUMO

Chlorpyrifos (CPF) is an organophosphate pesticide that can inhibit endocannabinoid (eCB) metabolizing enzymes in animal models at levels that do not significantly alter acetylcholinesterase (AChE) in the central nervous system (CNS). Previous studies indicated that repeated low-level CPF exposure in developing rats increased the levels of eCBs in the brain. Because eCBs play a role in immune homeostasis through their engagement with cannabinoid receptors, we investigated the role of cannabinoid receptor 1 (CB1, encoded by the Cnr1 gene) on the CPF-mediated effects in the spleen and lung of neonatal and adult female mice. We treated neonatal and adult female Cnr1-/- mice with 2.5 mg/kg oral CPF or vehicle for 7 days. Tissues were harvested 4 h after the last CPF dose to evaluate eCB metabolic enzyme activity, levels of eCBs, and tissue immunophenotype. There were a small number of genotype-dependent alterations noted in the endpoints following CPF treatment that were specific to age and tissue type, and differences in eCB metabolism caused by CPF treatment did not correlate to changes in eCB levels. To explore the role of CB1 in CPF-mediated effects on immune endpoints, in vitro experiments were performed with WT murine splenocytes exposed to chlorpyrifos oxon (CPO; oxon metabolite of CPF) and challenged with lipopolysaccharide (LPS). While CPO did not alter LPS-induced pro-inflammatory cytokine levels, inactivation of CB1 by the antagonist SR141716A augmented LPS-induced IFN-γ levels. Additional experiments with WT and Cnr1-/- murine splenocytes confirmed a role for CB1 in altering the production of LPS-induced pro-inflammatory cytokine levels. We conclude that CPF-mediated effects on the eCB system are not strongly dependent on CB1, although abrogation of CB1 does alter LPS-induced cytokine levels in splenocytes.


Assuntos
Clorpirifos , Inseticidas , Animais , Feminino , Camundongos , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Citocinas , Endocanabinoides , Inseticidas/toxicidade , Lipopolissacarídeos/toxicidade , Receptor CB1 de Canabinoide/genética , Baço/metabolismo
16.
Adv Biol (Weinh) ; 7(5): e2200254, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802210

RESUMO

Gulf War Illness (GWI) results from chemical exposure during the Gulf War, with notable impacts on gastrointestinal motility. Due to the limited demographic impacted by this ailment, an in-depth investigation of the GWI has yielded little regarding the underlying pathophysiological mechanisms. Here, the hypothesis that exposure to pyridostigmine bromide (PB) results in severe enteric neuro-inflammation, that cascades to disruptions in colonic motility, is tested. The analyses are performed on male C57BL/6 mice that are treated with physiologically similar doses of PB given to GW veterans. When colonic motility is assessed, GWI colons have significantly reduced forces in response to acetylcholine or electrical field stimulation. GWI is also accompanied by high levels of pro-inflammatory cytokines and chemokines, associated with increased numbers of CD40+ pro-inflammatory macrophages within the myenteric plexus. Enteric neurons responsible for mediating colonic motility reside within the myenteric plexus, and PB exposure reduced their numbers. Significant smooth muscle hypertrophy is also observed due to increased inflammation. Together, the results show that PB exposure caused functional and anatomical dysfunction, promoting impaired motility within the colon. Achieving a greater understanding of the mechanisms of GWI will allow more refinement in therapeutic options that improve veterans' quality of life.


Assuntos
Síndrome do Golfo Pérsico , Brometo de Piridostigmina , Camundongos , Masculino , Animais , Brometo de Piridostigmina/farmacologia , Síndrome do Golfo Pérsico/induzido quimicamente , Qualidade de Vida , Camundongos Endogâmicos C57BL , Inibidores da Colinesterase/toxicidade , Inflamação/induzido quimicamente , Inflamação/complicações
17.
Anal Chem ; 95(5): 2623-2627, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689728

RESUMO

Analytical chemists are often challenged to screen for bioactive compounds in complex matrices, sometimes without a priori knowledge of the exact compound of interest. Therefore, "flagging" techniques, highlighting common characteristics of bioactive compounds, are highly sought after. In this work, we demonstrate a double flagging method, where unknown organophosphorus acetylcholinesterase inhibitors are "flagged" out of a complex matrix by the presence of organophosphorus-indicative ions as well as their acetylcholinesterase inhibition. This is accomplished by flagging the LC chromatographic retention time of phosphorus-indicative ions using accurate mass high-energy in-source CID products, and the retention time of acetylcholinesterase inhibiting compounds using a parallel microfractionation-based bioassay. We successfully apply this method to screen VX, VM, and RVX nerve agents as well as methomyl, a carbamate pesticide, out of soil and whole blood samples at low µM to sub-µM concentrations. This methodology can be easily extended to diverse chemical families and biological activities of interest.


Assuntos
Acetilcolinesterase , Compostos Organofosforados , Humanos , Compostos Organofosforados/análise , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/análise
18.
Sci Total Environ ; 865: 161268, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592917

RESUMO

Carbaryl and fenitrothion are two insecticides sharing a common mode of action, the inhibition of the acetylcholinesterase (AChE) activity. Their use is now regulated or banned in different countries, and the environmental levels of both compounds in aquatic ecosystems have decreased to the range of pg/L to ng/L. As these concentrations are below the non-observed-adverse-effect-concentrations (NOAEC) for AChE inhibition reported for both compounds in aquatic organisms, there is a general agreement that the current levels of these two chemicals are safe for aquatic organisms. In this study we have exposed zebrafish, Japanese medaka and Daphnia magna to concentrations of carbaryl and fenitrothion under their NOAECs for 24-h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR) and its habituation have been evaluated. Both pesticides increased the HR in the three selected model organisms, although the intensity of this effect was chemical-, concentration- and organism-dependent. The exposure to both pesticides also led to a decrease in BLA and an increase in VMR in all three species, although this effect was only significant in zebrafish larvae. For SR and its habituation, the response profile was more species- and concentration-specific. The results presented in this manuscript demonstrate that concentrations of carbaryl and fenitrothion well below their respective NOAECs induce tachycardia and the impairment of ecologically relevant behaviors in phylogenetically distinct aquatic model organisms, both vertebrates and invertebrates, emphasizing the need to include this range of concentrations in the environmental risk assessment.


Assuntos
Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Carbaril/toxicidade , Fenitrotion/toxicidade , Peixe-Zebra , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase , Frequência Cardíaca , Organismos Aquáticos , Ecossistema , Inseticidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
19.
Drug Res (Stuttg) ; 73(3): 156-163, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626919

RESUMO

Oximes, as classical acetylcholinesterase (AChE) reactivators, have some pharmacokinetics/pharmacodynamics disadvantages. During the synthesis of non-oxime compounds, we encountered the compound 2-formylbenzoic acid (2-FBA) with promising in vitro and in vivo cholinesterase (ChE) reactivating properties in the acute exposure to diazinon (DZN). For in vitro experiments, the healthy mice serum and brain homogenate were freshly prepared and exposed to DZN (160 µg/mL). After 10 minutes, 2-FBA was added to the poisoned samples, and ChE activity was measured afterward. For the in vivo assay, the mice were poisoned with DZN subcutaneous (SC) injection (50 mg/kg), and after 1 hour, either 2-FBA or Pralidoxime (2-PAM) was injected intravenously (IV). After 3 h, ChE activity was measured in the serum and brain homogenate samples. The LD50 (IV) for 2-FBA in mice was measured as well. 2-FBA effectively reactivated the inhibited ChE in serum and brain homogenate samples in vitro. In the in vivo experiments, while 2-FBA could significantly reactivate the brain ChE even better than 2-PAM, they failed to reactivate the serum ChE by single IV injection. LD50 of 2-FBA was calculated to be 963 mg/kg. There were no general toxicity signs in any treatment groups. The in silico results support the potential ability of 2-FBA efficacy via possibly Witting reaction mechanism. Our findings indicate that 2-FBA seems to be a suitable non-oxime candidate for AChE reactivation with minimal side effects. Further toxicokinetic studies on this compound are strongly recommended to be performed before conducting the clinical trial in humans.


Assuntos
Reativadores da Colinesterase , Colinesterases , Camundongos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Diazinon/toxicidade , Acetilcolinesterase , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Antídotos/uso terapêutico
20.
Chem Biol Interact ; 369: 110285, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442613

RESUMO

Oximes play an essential role in the therapy of organophosphorus compound (OP) poisoning by reactivating inhibited acetylcholinesterase. Impairment of liver function was observed in OP poisoning and associated with obidoxime treatment by some reports. In this study human three-dimensional HepaRG spheroids were used as complex in vitro model to investigate oxime-induced liver toxicity. In this context, cold storage of liver spheroids at 4 °C in standard culture medium and in optimized tissue preservation solutions of up to 72 h was assessed. Cold storage in standard culture medium resulted in a complete loss of viability whereas an optimized tissue preservation solution preserved viability. Separately from that liver spheroids were exposed to the four oximes pralidoxime, obidoxime, HI-6, MMB-4 and cytotoxicity (effective concentration, EC50) was determined with an ATP-based assay at several time points. The release of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin secretion was measured in supernatants. The same parameters were assessed with diclofenac as positive hepatotoxic control and with the OP pesticides malathion and malaoxon alone or in the presence of obidoxime. All individual tested oximes and OP showed a low cytotoxicity with effective concentrations mostly >2,000 µM. In contrast, the exposure to malaoxon in the presence of 1,000 µM obidoxime resulted in a marked decrease of viability and an increased release of AST indicating risk of liver injury only if oxime antidotes are strongly overdosed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Cloreto de Obidoxima/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase , Inibidores da Colinesterase/toxicidade , Compostos de Piridínio/farmacologia , Oximas/farmacologia , Antídotos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA