Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Antivir Ther ; 28(6): 13596535231220754, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085652

RESUMO

BACKGROUND: Lenacapavir (LEN) is a first-in-class inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function for the treatment of heavily treatment-experienced people with HIV (PWH) harbouring multidrug resistance in combination with an optimized background regimen (OBR). Here, we describe in vitro analysis of the interplay between entry inhibitors (EI; enfuvirtide, fostemsavir, ibalizumab, and maraviroc) susceptibility and LEN susceptibility in samples from 72 participants in the phase 2/3 CAPELLA study, as well as the emergence of resistance in CAPELLA through 52 weeks. METHODS: The phenotypic susceptibility to EIs of screening samples from participants was analysed using entry assays, and susceptibility to LEN was generated. Genotypic and phenotypic resistance to LEN was evaluated for subjects with virological failure through Week 52. RESULTS: Overall, viruses with resistance to EIs showed no cross-resistance to LEN, with a mean fold change from wild type close to 1.0. Of the 22 participants analysed for resistance through Week 52, 9 participants (13%) had emergence of capsid resistance mutation(s) while the remaining 13 participants (18%) had no change in the capsid sequence. CONCLUSION: The gag sequence from EI-resistant isolates did not affect LEN susceptibility. The lack of cross-resistance to LEN across ARV-resistant isolates supports the use of LEN in PWH regardless of their treatment history. During the second half-year period of the CAPELLA Study, development of LEN resistance was rare and was overall associated with functional LEN monotherapy due to either nonadherence or resistance-driven non-susceptibility to OBR.


Assuntos
Fármacos Anti-HIV , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Inibidores da Fusão de HIV/uso terapêutico , Maraviroc/uso terapêutico , Farmacorresistência Viral/genética
2.
Drug Deliv Transl Res ; 13(8): 2183-2193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120679

RESUMO

Due to the presence of peptidase and protease in the gastrointestinal tract, peptides are subjected to digestion and inactivation when administrated orally. To avoid degradation and maintain the desired efficacy of peptide drugs, there is a demand to develop transdermal and intradermal delivery systems. This requires efficient and specific analytical methods to separate and quantify the peptide drugs from the formulation and the skin matrix in the early stages of pharmaceutical development. A high-performance liquid chromatography (HPLC) system equipped with a fluorometric detector was used to quantify enfuvirtide, which is the first fusion inhibitor for HIV treatment. The HPLC method was developed and validated according to the ICH Q2(R1) guidelines. The viability of the method was demonstrated during in vitro studies, where samples were analysed following intradermal administration of a thermosensitive in situ forming gel. Compared with previously reported methods, this assay proved efficient, sensitive and accurate, with a detection limit of 0.74 µg/mL and a run time of 9 min, mitigating the use of any internal standards and detergents. The addition of an organic solvent to the samples successfully solved the problem of low recovery caused by the adsorption of the drug to the plastic consumables in the sample treatment process. The amount of enfuvirtide releasing from the in situ gel through skin after 7 hours was 16.25 ± 7.08 µg, which was significantly lower than the reconstituted FUZEON® itself (26.68 ± 10.45 µg), showing a longer release profile. The results may be beneficial as a constructive input for future enfuvirtide quantification within a preclinical setting through in vitro release studies across the skin.


Assuntos
Inibidores da Fusão de HIV , Fragmentos de Peptídeos , Enfuvirtida , Cromatografia Líquida de Alta Pressão/métodos , Fragmentos de Peptídeos/química , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/uso terapêutico , Preparações Farmacêuticas
3.
Viruses ; 14(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36560653

RESUMO

Lassa virus (LASV) is a highly pathogenic virus that is categorized as a biosafety level-4 pathogen. Currently, there are no approved drugs or vaccines specific to LASV. In this study, high-throughput screening of a fragment-based drug discovery library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two compounds, F1920 and F1965, were identified as LASV entry inhibitors that block GPC-mediated membrane fusion. Analysis of adaptive mutants demonstrated that the transient mutants L442F and I445S, as well as the constant mutant F446L, were located on the same side on the transmembrane domain of the subunit GP2 of GPC, and all the mutants conferred resistance to both F1920 and F1965. Furthermore, F1920 antiviral activity extended to other highly pathogenic mammarenaviruses, whereas F1965 was LASV-specific. Our study showed that both F1920 and F1965 provide a potential backbone for the development of lead drugs for preventing LASV infection.


Assuntos
Arenaviridae , Inibidores da Fusão de HIV , Febre Lassa , Humanos , Vírus Lassa , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Inibidores da Fusão de HIV/uso terapêutico
5.
Adv Exp Med Biol ; 1366: 1-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412131

RESUMO

The approval of enfuvirtide marked a milestone for the development of virus entry inhibitor-based antiviral therapeutics. Since then, more peptide-, small-molecule-, and protein-based entry inhibitors have been identified and approved for viral diseases. Here we reviewed the development of virus entry inhibitors and the advantages and disadvantages of peptide-, small-molecule-, and protein-based entry inhibitors, herein summarizing the future trend of these antivirals. Virus entry inhibitors take effect outside the host cell, making them good candidates for development as pre- and post-exposure prophylaxis, microbicides, and therapeutics. This chapter, as well as this book, provides more information on the development and modification of peptide-, small-molecule-, and protein-based virus entry inhibitors.


Assuntos
Inibidores da Fusão de HIV , Internalização do Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Enfuvirtida/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Peptídeos/farmacologia
6.
Adv Exp Med Biol ; 1366: 15-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412132

RESUMO

The development of peptide-based HIV entry inhibitors has made an important contribution to the stock of anti-HIV drugs. In particular, the peptide-based anti-HIV drugs enfuvirtide and albuvirtide were approved for clinical use by the U.S. FDA and CFDA in 2003 and 2018, respectively. Peptide-based HIV entry inhibitors exert antiviral activity by targeting the early stage of viral infection, i.e., binding of a viral surface protein to the receptor(s) on the host cell and the subsequent fusion between the viral and host cell membranes. Therefore, they are particularly useful for HIV-infected patients who have failed to respond to the highly active antiretroviral drugs (ARD) targeting the late stage of HIV replication, such as reverse transcriptase inhibitors and protease inhibitors. In this chapter, we will focus on the past, current, and future trends in research and development of peptide-based HIV entry inhibitors.


Assuntos
Fármacos Anti-HIV , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico
7.
Adv Exp Med Biol ; 1366: 27-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412133

RESUMO

Interrupting early events in the virus life cycle, such as those prior to the formation of provirus, could effectively prevent HIV-1 infection. HIV-1 entry into host cells is mediated by the envelope glycoprotein (Env) trimer, which is composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Hence, the development of novel inhibitors targeting these two glycoproteins could hold the key to early inhibition of HIV-1 infection. Small-molecule entry inhibitors targeting early events in the virus life cycle comprise a well-established class of useful drugs. Many libraries of small-molecule inhibitors have been established to screen potential drug candidates for a variety of targets based on computer docking, FRET, or peptide-linked assay. This chapter reviews the mechanisms of some small-molecule inhibitors targeting HIV-1 gp120 and gp41 and corresponding high-efficiency screening strategies for potential small-molecule inhibitors.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , Glicoproteínas , Proteína gp120 do Envelope de HIV , Proteína gp41 do Envelope de HIV/farmacologia , Proteína gp41 do Envelope de HIV/uso terapêutico , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Bibliotecas de Moléculas Pequenas
8.
Adv Exp Med Biol ; 1366: 45-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412134

RESUMO

Gp120 is a critical viral proteins required for HIV-1 entry and infection. It facilitates HIV-1 binding to target cells, human-to-human transmission, relocation of virus from mucosa to lymph nodes, cell-cell infection and syncytium formation, and the bystander effect that kills uninfected CD4+ T-cells and other human cells. Molecules that bind to gp120 can inhibit its function by stabilizing conformations of the protein, leading to the inability to infect cells, and resulting in non-permissive. Small molecule-mediated stabilization of certain conformations of gp120 may also enhance recognition of HIV-1 infected cells by neutralizing antibodies and make the virus more susceptible to effector functions such as ADCC, which could potentially be part of future cure regimens. Additionally, HIV attachment inhibitors can complex with free gp120 and potentially repress both cytopathic effects from membrane-bound or soluble gp120. Fostemsavir (RukobiaTM), a phosphate prodrug of an HIV-1 attachment inhibitor that was recently approved for use in highly treatment experienced (HTE) patients with multidrug resistant HIV-1 is a first-in-class drug with a favorable safety profile that provides an additional treatment option for treatment in this population of patients with a high medical need.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Organofosfatos/uso terapêutico , Piperazinas/uso terapêutico
9.
Adv Exp Med Biol ; 1366: 87-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412136

RESUMO

The continued HIV/AIDS epidemic worldwide and the battle against emerging infectious diseases caused by coronaviruses underscore the need for the development of an ever-expanding repertoire of antiviral drugs. Entry inhibitors are of particular interest because of their potential to be used as therapeutic or prophylactic treatments for blocking viral invasion. HIV and coronaviruses utilize class I fusion proteins to facilitate their entry and membrane fusion. Discovery of a common hexameric coiled-coil fusion complex resulting from the packing of three C-terminal heptad repeat region from the fusion-mediating subunit of viral fusion proteins against trimeric coiled-coil made up by their N-terminal heptad repeat prompted the search for peptides mimicking the heptad repeat regions that could potentially inhibit viral entry. This has led to the development of effective peptides that are specific to the virus that is developed for. In this review, we focus on peptide-based entry dual inhibitors that block fusion process not only of HIV but also coronaviruses through interrupting their fusogenic six-helical bundle core and which hopefully will help to gain insight into the α-helical secondary structure- and coiled-coil superstructure-based strategies to design entry inhibitors with broad-spectrum antiviral activity against enveloped viruses with class I fusion proteins.


Assuntos
Antivirais , Infecções por Coronavirus , Coronavirus , Inibidores da Fusão de HIV , Infecções por HIV , Peptídeos , Sequência de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Humanos , Peptídeos/farmacologia , Estrutura Secundária de Proteína
10.
Adv Exp Med Biol ; 1366: 65-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412135

RESUMO

The discovery of the G-protein coupled-receptor (GPCR) CXCR4 as a major coreceptor of HIV-1 entry about three decades ago explained why the chemokine SDF-1/CXCL12 inhibits specific viral strains. The knowledge that RANTES, MlP-1α, and MlP-1ß specifically inhibit other primary HIV-1 strains allowed the rapid discovery of CCR5 as second major viral coreceptor and explained why individuals with deletions in CCR5 are protected against sexual HIV-1 transmission. Here, we provide an update on endogenous ligands of GPCRs that act as endogenous inhibitors of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) entry. In addition, we summarize the development of optimized derivatives of endogenous GPCR ligands and their perspectives as antiviral agents and beyond. Finally, we provide examples for other endogenous peptides that may contribute to our innate immune defense against HIV-1 and other viral pathogens and offer prospects for preventive or therapeutic development.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , HIV-1/fisiologia , HIV-2/metabolismo , HIV-2/fisiologia , Humanos , Ligantes , Peptídeos/uso terapêutico , Receptores CCR5 , Receptores Acoplados a Proteínas G/uso terapêutico , Transdução de Sinais , Vírus da Imunodeficiência Símia
11.
J Biomol Struct Dyn ; 40(23): 13115-13126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34569417

RESUMO

C-C chemokine receptor 5 (CCR5), which is part of the chemokine receptor family, is a member of the G protein-coupled receptor superfamily. The interactions of CCR5 with HIV-1 during viral entry position it as an effective therapeutic target for designing potent antiviral therapies. The small-molecule Maraviroc was approved by the FDA as a CCR5 drug in 2007, while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the continual identification of potential CCR5 inhibitors is, therefore, warranted. In this study, a structure-based discovery approach has been utilised to screen and retrieved novel potential CCR5 inhibitors from the Asinex antiviral compound (∼ 8,722) database. Explicit lipid-bilayer molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were further performed for the top compounds. A total of 23 structurally diverse compounds with binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543, maintained stability at the CCR5 binding site. Furthermore, these compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the predicted in silico physicochemical and pharmacokinetic descriptors of the selected compounds were within the acceptable range for drug-likeness. The results suggest positive indications that the identified molecules may represent promising CCR5 entry inhibitors. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of effective HIV-1 therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Humanos , Maraviroc/farmacologia , Maraviroc/metabolismo , Maraviroc/uso terapêutico , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/uso terapêutico , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/uso terapêutico , Cicloexanos/farmacologia , Cicloexanos/química , Triazóis/farmacologia , Triazóis/química , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/uso terapêutico , Receptores CCR5/química , Receptores CCR5/metabolismo , Receptores CCR5/uso terapêutico , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico
12.
Curr HIV Res ; 19(6): 465-475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34503415

RESUMO

A number of different viral families have developed convergent methods to infect cells. Class I fusion proteins are commonly used by members of Arenaviridae, Coronaviridae, Filovirdae, Orthomyxoviridae, Paramyxoviridae, and Retroviridae. Class I viral fusion proteins are trimers that are involved in recognizing the cellular receptor, with a region that is responsible for fusing the viral and target cell membranes. During the fusion process, the fusion region folds into a six-helix bundle (6 HB) which approximates the two membranes leading to fusion. For Human Immunodeficiency Virus (HIV), the gp41 subunit is responsible for the formation of this 6 HB. The fusion inhibitor drug enfuvirtide, or T20, is the only US Food and Drug Administration and European Medicines Agency approved drug which targets this crucial step and has been widely used in combination regimens for the treatment of HIV since March 2003. In this review, we describe the current state of peptide-based fusion inhibitors in the treatment of HIV, and review how the field of HIV research is driving advances in the development of similar therapeutics in other viral systems, including the Severe Acute Respiratory Syndrome (SARS) coronaviruses.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , Antirretrovirais/uso terapêutico , Proteína gp41 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Fragmentos de Peptídeos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
13.
Biochem Pharmacol ; 182: 114231, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979351

RESUMO

Human immunodeficiency virus (HIV) remains incurable due to latent reservoirs established in non-activated CD4 T cells. Current efforts to achieve a functional cure rely on immunomodulatory strategies focused on enhancing the functions of cytotoxic cells. Implementation of these actions requires a coordinated activation of the viral transcription in latently infected cells so that the reservoir became visible and accessible to cytotoxic cells. As no latency reversing agent (LRA) has been shown to be completely effective, new combinations are of increasing importance. Recent data have shown that maraviroc is a new LRA. In this work, we have explored how the combination of maraviroc with other LRAs influences on HIV reactivation using in vitro latency models as well as on the cell viability of CD8 T cells from ART-treated patients. Maraviroc reactivated HIV with a potency similar to other LRAs. Triple combinations resulted toxic and were rejected. No dual combination was synergistic. The combination with panobinostat or disulfiram maintained the effect of both drugs without inducing cell proliferation or toxicity. Maraviroc does not alter the viability of CD8 T cells isolated from patients under antiretroviral treatment. This finding enhances the properties of maraviroc as a LRA.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Maraviroc/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Humanos , Masculino , Maraviroc/uso terapêutico , Pessoa de Meia-Idade , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
14.
Viruses ; 12(3)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197300

RESUMO

Peptides derived from the C-terminal heptad repeat (CHR) region of HIV-1 gp41 is potent viral membrane fusion inhibitors, such as the first clinically approved peptide drug T20 and a group of newly-designed peptides. The resistance profiles of various HIV-1 fusion inhibitors were previously characterized, and the secondary mutation N126K in the gp41 CHR was routinely identified during the in vitro and in vivo selections. In this study, the functional and structural relevance of the N126K mutation has been characterized from multiple angles. First, we show that a single N126K mutation across several HIV-1 isolates conferred mild to moderate cross-resistances. Second, the N126K mutation exerted different effects on Env-mediated HIV-1 entry and cell-cell fusion. Third, the N126K mutation did not interfere with the expression and processing of viral Env glycoproteins, but it disrupted the Asn126-based glycosylation site in gp41. Fourth, the N126K mutation was verified to enhance the thermal stability of 6-HB conformation. Fifth, we determined the crystal structure of a 6-HB bearing the N126K mutation, which revealed the interhelical and intrahelical interactions underlying the increased thermostability. Therefore, our data provide new information to understand the mechanism of HIV-1 gp41-mediated cell fusion and its resistance mode to viral fusion inhibitors.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Genótipo , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
15.
Ann Intern Med ; 172(5): 297-305, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040959

RESUMO

Background: Patients diagnosed with advanced HIV infection have a poor prognosis despite initiation of combined antiretroviral therapy (c-ART). Objective: To assess the benefit of adding maraviroc, an antiretroviral drug with immunologic effects, to standard c-ART for patients with advanced disease at HIV diagnosis. Design: Randomized controlled trial. (ClinicalTrials.gov: NCT01348308). Setting: Clinical sites in France (n = 25), Italy (n = 5), and Spain (n = 20). Participants: 416 HIV-positive, antiretroviral-naive adults with CD4 counts less than 0.200 × 109 cells/L and/or a previous AIDS-defining event (ADE). Intervention: C-ART plus placebo or maraviroc (300 mg twice daily with dose modification) for 72 weeks. Measurements: The primary end point was first occurrence of severe morbidity (new ADE, selected serious infections, serious non-ADE, immune reconstitution inflammatory syndrome, or death). Prespecified secondary outcomes included primary outcome components, biological and pharmacokinetic measures, and adverse events graded 2 or higher. Results: 409 randomly assigned participants (207 in the placebo group and 202 in the maraviroc group) who received more than 1 dose were included in the analysis. During 72 weeks of follow-up, incidence of severe morbidity was 11.1 per 100 person-years in the maraviroc group and 11.2 per 100 person-years in the placebo group (hazard ratio, 0.97 [95% CI, 0.57 to 1.67]). Incidence of adverse events graded 2 or higher was 36.1 versus 41.5 per 100 person-years (incidence rate ratio, 0.87 [CI, 0.65 to 1.15]). Limitations: Sixty-four participants discontinued therapy during follow-up. The study was not designed to evaluate time-dependent outcomes or effect modification. Conclusion: Addition of maraviroc to standard c-ART does not improve clinical outcomes of patients initiating therapy for advanced HIV infection. Primary Funding Source: INSERM-ANRS (French National Agency for Research on AIDS).


Assuntos
Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Maraviroc/uso terapêutico , Adulto , Idoso , Fármacos Anti-HIV/administração & dosagem , Contagem de Linfócito CD4 , Método Duplo-Cego , Feminino , Inibidores da Fusão de HIV/administração & dosagem , HIV-1/efeitos dos fármacos , Humanos , Masculino , Maraviroc/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Adulto Jovem
16.
Int J Antimicrob Agents ; 54(5): 592-600, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31394172

RESUMO

Antiretroviral therapy (ART) is typically composed of a combination of three antiretroviral drugs and is the treatment of choice for people with human immunodeficiency virus type 1/acquired immune deficiency syndrome (HIV-1/AIDS). However, it is unable to impact on viral reservoirs, which harbour latent HIV-1 genomes that are able to reignite the infection upon treatment suspension. The aim of this study was to provide an estimate of the safety of the disease-modifying antirheumatic agent auranofin and its impact on the HIV-1 reservoir in humans under intensified ART. For this purpose, an interim analysis was conducted of three of the six arms of the NCT02961829 clinical trial (five patients each) with: no intervention, i.e. continuation of first-line ART; intensified ART (ART + dolutegravir and maraviroc); and intensified ART plus auranofin. Auranofin treatment was found to be well tolerated. No major adverse events were detected apart from a transient decrease in CD4+ T-cell counts at Weeks 8 and 12. Auranofin decreased total viral DNA in peripheral blood mononuclear cells compared with ART-only regimens at Week 20 (P = 0.036) and induced a decrease in integrated viral DNA as quantified by Alu PCR. Despite the limited number of patient-derived sequences available in this study, phylogenetic analyses of nef sequences support the idea that auranofin may impact on the viral reservoir. [ClinicalTrials.gov ID: NCT02961829].


Assuntos
Antirreumáticos/uso terapêutico , Auranofina/uso terapêutico , HIV-1/genética , Provírus/efeitos dos fármacos , Provírus/genética , Latência Viral/efeitos dos fármacos , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , DNA Viral/efeitos dos fármacos , DNA Viral/genética , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Maraviroc/uso terapêutico , Oxazinas , Piperazinas , Piridonas
17.
Viruses ; 11(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374953

RESUMO

Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.


Assuntos
Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , HIV-1/química , Humanos , Fragmentos de Peptídeos/uso terapêutico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Internalização do Vírus/efeitos dos fármacos
18.
AIDS Res Hum Retroviruses ; 35(10): 941-947, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31280582

RESUMO

Fusion inhibitors are antiretroviral (ARV) drugs that prevent HIV-1 entry into host cells. Enfuvirtide (ENF) is the only ARV drug marketed in this class and, like other HIV drugs, it has been associated with the emergence and selection of therapeutic-resistant HIV-1 strains. The aims of this work were to develop a computational tool capable of identifying and classifying mutations associated with resistance to Enfuvirtide and to evaluate the prevalence of these mutations among the HIV-1 sequences deposited in public databases. The HIVfird (HIV-1 fusion inhibitor resistance detector) was developed using the PHP programming language, using 30 DNA bases obtained from the HIV-1 HXB2 gp41 protein as a reference. To assess the level of resistance in HIV-1 populations, sequences were retrieved from the Los Alamos National Laboratory (LANL) database. The HIVfird is hosted at www.hivfird.ics.ufba.br, fully functional and available for public use. Twenty-five amino acid substitutions and 15 combinations were found to be associated with some level of resistance to ENF. These mutations are located at positions 36-45 of gp41, with 36, 38, 43, and 44 having the greatest diversity and frequency of variations associated with drug resistance. Resistance mutations were found in 3.16% and 4.67% of the circulating HIV-1 isolates in the world and Brazil, respectively. Subtype B showed a significantly higher ENF resistance rate (4.9%) compared to other genetic forms, while subtype C presented the lowest rate (0.9%). We present here HIVfird, an online tool that might assist in the therapeutic management of HIV-1 patients with multiple drug failure and in population-based analysis of drug resistance.


Assuntos
Análise Mutacional de DNA/métodos , DNA Viral/genética , Farmacorresistência Viral , Enfuvirtida/farmacocinética , Proteína gp41 do Envelope de HIV/genética , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Mutação , Software , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Bases de Dados Genéticas , Farmacorresistência Viral/genética , Enfuvirtida/uso terapêutico , Saúde Global , Proteína gp41 do Envelope de HIV/fisiologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Internet , Mutação de Sentido Incorreto , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
20.
PLoS Pathog ; 15(2): e1007552, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716118

RESUMO

Combination antiretroviral therapy (cART) dramatically improves survival of HIV-infected patients, but lifelong treatment can ultimately result in cumulative toxicities and drug resistance, thus necessitating the development of new drugs with significantly improved pharmaceutical profiles. We recently found that the fusion inhibitor T-20 (enfuvirtide)-based lipopeptides possess dramatically increased anti-HIV activity. Herein, a group of novel lipopeptides were designed with different lengths of fatty acids, identifying a stearic acid-modified lipopeptide (LP-80) with the most potent anti-HIV activity. It inhibited a large panel of divergent HIV subtypes with a mean IC50 in the extremely low picomolar range, being > 5,300-fold more active than T-20 and the neutralizing antibody VRC01. It also sustained the potent activity against T-20-resistant mutants and exhibited very high therapeutic selectivity index. Pharmacokinetics of LP-80 in rats and monkeys verified its potent and long-acting anti-HIV activity. In the monkey, subcutaneous administration of 3 mg/kg LP-80 yielded serum concentrations of 1,147 ng/ml after injection 72 h and 9 ng/ml after injection 168 h (7 days), equivalent to 42,062- and 330-fold higher than the measured IC50 value. In SHIV infected rhesus macaques, a single low-dose LP-80 (3 mg/kg) sharply reduced viral loads to below the limitation of detection, and twice-weekly monotherapy could maintain long-term viral suppression.


Assuntos
Enfuvirtida/uso terapêutico , Lipopeptídeos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Animais , Antirretrovirais , Anticorpos Neutralizantes , Farmacorresistência Viral , Enfuvirtida/farmacologia , Células HEK293 , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1/patogenicidade , Humanos , Macaca mulatta/imunologia , Macaca mulatta/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA