Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2769, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426822

RESUMO

Current anti-hepatitis B virus (HBV) agents including interferons and nucleos(t)ide analogs efficiently suppress HBV infection. However, as it is difficult to eliminate HBV from chronically infected liver, alternative anti-HBV agents targeting a new molecule are urgently needed. In this study, we applied a chemical array to high throughput screening of small molecules that interacted with sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for HBV. From approximately 30,000 compounds, we identified 74 candidates for NTCP interactants, and five out of these were shown to inhibit HBV infection in cell culture. One of such compound, NPD8716, a coumarin derivative, interacted with NTCP and inhibited HBV infection without causing cytotoxicity. Consistent with its NTCP interaction capacity, this compound was shown to block viral attachment to host hepatocytes. NPD8716 also prevented the infection with hepatitis D virus, but not hepatitis C virus, in agreement with NPD8716 specifically inhibiting NTCP-mediated infection. Analysis of derivative compounds showed that the anti-HBV activity of compounds was apparently correlated with the affinity to NTCP and the capacity to impair NTCP-mediated bile acid uptake. These results are the first to show that the chemical array technology represents a powerful platform to identify novel viral entry inhibitors.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Transportadores de Ânions Orgânicos Dependentes de Sódio/agonistas , Simportadores/agonistas , Inibidores de Proteínas Virais de Fusão/isolamento & purificação , Inibidores de Proteínas Virais de Fusão/farmacologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Células Hep G2 , Hepacivirus/efeitos dos fármacos , Vírus Delta da Hepatite/efeitos dos fármacos , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Inibidores de Proteínas Virais de Fusão/química
2.
J Virol ; 90(5): 2690-701, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676787

RESUMO

UNLABELLED: A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE: Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of these two compounds. This report offers new lead compounds for the design of fusion inhibitors for influenza A viruses and further shows that analysis by forward chemical genetics is a highly effective approach for the identification of novel compounds that can perturb the infectivity of viruses and to probe new druggable targets or druggable domains in various viruses.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A/efeitos dos fármacos , Inibidores de Proteínas Virais de Fusão/isolamento & purificação , Inibidores de Proteínas Virais de Fusão/farmacologia , Animais , Linhagem Celular , Hemaglutininas Virais/genética , Humanos , Vírus da Influenza A/genética , Simulação de Acoplamento Molecular , Mutação , Genética Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA