RESUMO
BACKGROUND: Simnotrelvir is an oral 3-chymotrypsin-like protease inhibitor that has been found to have in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential efficacy in a phase 1B trial. METHODS: In this phase 2-3, double-blind, randomized, placebo-controlled trial, we assigned patients who had mild-to-moderate coronavirus disease 2019 (Covid-19) and onset of symptoms within the past 3 days in a 1:1 ratio to receive 750 mg of simnotrelvir plus 100 mg of ritonavir or placebo twice daily for 5 days. The primary efficacy end point was the time to sustained resolution of symptoms, defined as the absence of 11 Covid-19-related symptoms for 2 consecutive days. Safety and changes in viral load were also assessed. RESULTS: A total of 1208 patients were enrolled at 35 sites in China; 603 were assigned to receive simnotrelvir and 605 to receive placebo. Among patients in the modified intention-to-treat population who received the first dose of trial drug or placebo within 72 hours after symptom onset, the time to sustained resolution of Covid-19 symptoms was significantly shorter in the simnotrelvir group than in the placebo group (180.1 hours [95% confidence interval {CI}, 162.1 to 201.6] vs. 216.0 hours [95% CI, 203.4 to 228.1]; median difference, -35.8 hours [95% CI, -60.1 to -12.4]; P = 0.006 by Peto-Prentice test). On day 5, the decrease in viral load from baseline was greater in the simnotrelvir group than in the placebo group (mean difference [±SE], -1.51±0.14 log10 copies per milliliter; 95% CI, -1.79 to -1.24). The incidence of adverse events during treatment was higher in the simnotrelvir group than in the placebo group (29.0% vs. 21.6%). Most adverse events were mild or moderate. CONCLUSIONS: Early administration of simnotrelvir plus ritonavir shortened the time to the resolution of symptoms among adult patients with Covid-19, without evident safety concerns. (Funded by Jiangsu Simcere Pharmaceutical; ClinicalTrials.gov number, NCT05506176.).
Assuntos
COVID-19 , Inibidores de Protease de Coronavírus , Adulto , Humanos , Administração Oral , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , China , Proteínas M de Coronavírus/antagonistas & inibidores , Proteínas M de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/administração & dosagem , Inibidores de Protease de Coronavírus/efeitos adversos , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/uso terapêutico , COVID-19/metabolismo , COVID-19/terapia , Tratamento Farmacológico da COVID-19/métodos , Método Duplo-Cego , Ritonavir/administração & dosagem , Ritonavir/efeitos adversos , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Fatores de Tempo , Combinação de MedicamentosAssuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/uso terapêutico , Lactamas/uso terapêutico , Leucina/uso terapêutico , Nitrilas/uso terapêutico , Prolina/uso terapêutico , Ritonavir/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , COVID-19/virologia , Ensaios Clínicos como Assunto , Inibidores de Protease de Coronavírus/administração & dosagem , Inibidores de Protease de Coronavírus/farmacologia , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Lactamas/administração & dosagem , Lactamas/farmacologia , Leucina/administração & dosagem , Leucina/farmacologia , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Prolina/administração & dosagem , Prolina/farmacologia , Ritonavir/administração & dosagem , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , ComprimidosRESUMO
The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (-16.8 ± 0.02 kcal/mol, -12.3 ± 0.03 kcal/mol and -13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.
Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Antivirais/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Proteínas de Bactérias/ultraestrutura , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/ultraestrutura , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/uso terapêutico , Inibidores de Protease de Coronavírus/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Difração de Raios XRESUMO
This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.
Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Extratos Vegetais/farmacologia , Zingiber officinale/química , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/isolamento & purificação , Inibidores de Protease de Coronavírus/uso terapêutico , Cristalografia por Raios X , Ensaios Enzimáticos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Ácidos Sulfônicos/farmacologiaRESUMO
Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fulerenos/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/uso terapêutico , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , Cristalografia por Raios X , Fulerenos/química , Fulerenos/uso terapêutico , Humanos , Simulação de Dinâmica Molecular , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pandemias/prevenção & controle , RNA Viral/biossíntese , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/ultraestruturaRESUMO
The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Lactamas/farmacologia , Leucina/farmacologia , Nitrilas/farmacologia , Prolina/farmacologia , Antivirais/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , Humanos , Lactamas/uso terapêutico , Leucina/uso terapêutico , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas/uso terapêutico , Prolina/uso terapêutico , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologiaRESUMO
3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Ginkgo biloba/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Inibidores de Protease de Coronavírus/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Estrutura Molecular , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , SARS-CoV-2/enzimologia , Salicilatos/farmacologia , Salicilatos/uso terapêuticoRESUMO
OBJECTIVES: To define key genetic elements, single or in clusters, underlying SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) evolutionary diversification across continents, and their impact on drug-binding affinity and viral antigenicity. METHODS: A total of 12 150 SARS-CoV-2 sequences (publicly available) from 69 countries were analysed. Mutational clusters were assessed by hierarchical clustering. Structure-based virtual screening (SBVS) was used to select the best inhibitors of 3-chymotrypsin-like protease (3CL-Pr) and RNA-dependent RNA polymerase (RdRp) among the FDA-approved drugs and to evaluate the impact of mutations on binding affinity of these drugs. The impact of mutations on epitope recognition was predicted following Grifoni et al. (Cell Host Microbe 2020. 27: 671-80.). RESULTS: Thirty-five key mutations were identified (prevalence: ≥0.5%), residing in different viral proteins. Sixteen out of 35 formed tight clusters involving multiple SARS-CoV-2 proteins, highlighting intergenic co-evolution. Some clusters (including D614GSpike + P323LRdRp + R203KN + G204RN) occurred in all continents, while others showed a geographically restricted circulation (T1198KPL-Pr + P13LN + A97VRdRp in Asia, L84SORF-8 + S197LN in Europe, Y541CHel + H504CHel + L84SORF-8 in America and Oceania). SBVS identified 20 best RdRp inhibitors and 21 best 3CL-Pr inhibitors belonging to different drug classes. Notably, mutations in RdRp or 3CL-Pr modulate, positively or negatively, the binding affinity of these drugs. Among them, P323LRdRp (prevalence: 61.9%) reduced the binding affinity of specific compounds including remdesivir while it increased the binding affinity of the purine analogues penciclovir and tenofovir, suggesting potential hypersusceptibility. Finally, specific mutations (including Y541CHel + H504CHel) strongly hampered recognition of Class I/II epitopes, while D614GSpike profoundly altered the structural stability of a recently identified B cell epitope target of neutralizing antibodies (amino acids 592-620). CONCLUSIONS: Key genetic elements reflect geographically dependent SARS-CoV-2 genetic adaptation, and may play a potential role in modulating drug susceptibility and hampering viral antigenicity. Thus, a close monitoring of SARS-CoV-2 mutational patterns is crucial to ensure the effectiveness of treatments and vaccines worldwide.
Assuntos
Adaptação Biológica/genética , Antivirais/metabolismo , COVID-19/imunologia , Proteases 3C de Coronavírus/genética , Inibidores de Protease de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/genética , SARS-CoV-2/genética , América , Sequência de Aminoácidos , Antígenos Virais/sangue , Antivirais/uso terapêutico , Ásia , COVID-19/epidemiologia , Simulação por Computador , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Europa (Continente) , Evolução Molecular , Humanos , Simulação de Acoplamento Molecular , Família Multigênica , Mutação/genética , Taxa de Mutação , Oceania , Ligação Proteica , SARS-CoV-2/enzimologia , Topografia Médica , Tratamento Farmacológico da COVID-19Assuntos
Terapia Antirretroviral de Alta Atividade , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/uso terapêutico , SARS-CoV-2/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Reposicionamento de Medicamentos , Humanos , Inibidores de Integrase/uso terapêutico , Índice de Gravidade de Doença , Inibidores de Protease Viral/uso terapêuticoRESUMO
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 20 million people infected worldwide with an average mortality rate of 3.6%. This virus poses major challenges to public health, as it not only is highly contagious but also can be transmitted by asymptomatic infected individuals. COVID-19 is clinically difficult to manage due to a lack of specific antiviral drugs or vaccines. In this article, Chinese therapy strategies for treating COVID-19 patients, including current applications of traditional Chinese medicine (TCM), are comprehensively reviewed. Furthermore, 72 small molecules from natural products and TCM with reported antiviral activity against human coronaviruses (CoVs) are identified from published literature, and their potential applications in combating SARS-CoV-2 are discussed. Among these, the clinical efficacies of some accessible drugs such as remdesivir (RDV) and favipiravir (FPV) for COVID-19 are emphatically summarized. We hope this review provides a foundation for managing the worsening pandemic and developing antivirals against SARS-CoV-2.