Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ChemMedChem ; 16(24): 3653-3662, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582626

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors. The top molecule 1 of that series strongly inhibited CYP2C8 (IC50 =100 nM), which was attributed to the bridged linker group. However, our effort on the linker replacement turned out to be fruitless. With the study of the X-ray crystal structure of compound 1, we envisioned the opportunity of removal of this liability via transposition of the linker moiety in 1 from C6 to C5 position of the pyridine core. With this strategy, our optimization led to the discovery of a novel series, in which the top molecule 18 A displayed reduced CYP inhibitory activity and good potency. To further explore this new series, different warheads besides acrylamide, for example cyanamide, were also tested. However, this effort didn't lead to the discovery of molecules with better potency than 18 A. The loss of potency in those molecules could be related to the reduced reactivity of the warhead or reversible binding mode. Further profiling of 18 A disclosed that it had a strong hERG (human Ether-a-go-go Related Gene) inhibition, which could be related to the phenoxyphenyl group.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores do Citocromo P-450 CYP2C8/síntese química , Inibidores do Citocromo P-450 CYP2C8/química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
2.
Chem Res Toxicol ; 34(8): 1850-1859, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34255486

RESUMO

Cytochrome P450 2C8 (CYP2C8) is a major drug-metabolizing enzyme in humans and is responsible for the metabolism of ∼5% drugs in clinical use. Thus, inhibition of CYP2C8, which causes potential adverse drug events, cannot be neglected. The in vitro drug interaction studies guidelines for industry issued by the FDA also point out that it needs to be determined whether investigated drugs are CYP2C8 inhibitors before clinical trials. However, current studies mainly focus on predicting the inhibitors of other major P450 enzymes, and the importance of CYP2C8 inhibition has been overlooked. Therefore, there is a need to develop models for identifying potential CYP2C8 inhibition. In this study, in silico classification models for predicting CYP2C8 inhibition were built by five machine-learning methods combined with nine molecular fingerprints. The performance of the models built was evaluated by test and external validation sets. The best model had AUC values of 0.85 and 0.90 for the test and external validation sets, respectively. The applicability domain was analyzed based on the molecular similarity and exhibited an impact on the improvement of prediction accuracy. Furthermore, several representative privileged substructures such as 1H-benzo[d]imidazole, 1-phenyl-1H-pyrazole, and quinoline were identified by information gain and substructure frequency analysis. Overall, our results would be helpful for the prediction of CYP2C8 inhibition.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/química , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Simulação por Computador , Descoberta de Drogas , Humanos , Imidazóis/química , Imidazóis/farmacologia , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Pirazóis/química , Pirazóis/farmacologia
3.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502336

RESUMO

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morfolinas/administração & dosagem , Morfolinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Administração Oral , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Disponibilidade Biológica , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Inibidores do Citocromo P-450 CYP2C8/química , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Reparo do DNA/efeitos dos fármacos , Cães , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Humanos , Camundongos SCID , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/química , Pirazóis/química , Ratos Wistar , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Invest Ophthalmol Vis Sci ; 58(10): 4126-4137, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28829844

RESUMO

Purpose: Nuclear factor κB (NFκB) is a ubiquitously expressed, proinflammatory transcription factor that controls the expression of genes involved in cell survival, angiogenesis, complement activation, and inflammation. Studies have implicated NFκB-dependent cytokines or complement-related factors as being detrimentally involved in retinal diseases, thus making inhibition of NFκB signaling a potential therapeutic target. We sought to develop a conditional and reversible method that could regulate pathogenic NFκB signaling by the addition of a small molecule. Methods: We developed a genetically based, trimethoprim (TMP)-regulated approach that conditionally inhibits NFκB signaling by fusing a destabilized dihydrofolate reductase (DHFR) domain to an inhibitor of NFκB, IκBα, in ARPE-19 cells. We then challenged ARPE-19 cells with a number of stimuli that have been demonstrated to trigger NFκB signaling, including LPS, TNFα, IL-1α, and A2E. Western blotting, electrophoretic mobility shift assay, quantitative PCR, ELISA, and NFκB reporter assays were used to evaluate the effectiveness of this DHFR-IκBα approach. Results: This destabilized domain approach, coupled with doxycycline-inducibility, allowed for accurate control over the abundance of DHFR-IκBα. Stabilization of DHFR-IκBα with TMP prevented IL-1α-, A2E-, LPS-, and TNFα-induced NFκB-mediated upregulation and release of the proinflammatory cytokines IL-1ß and IL-6 from ARPE-19 cells (by as much as 93%). This strategy is dosable, completely reversible, and can be cycled "on" or "off" within the same cell population repeatedly to confer protection at desired time points. Conclusions: These studies lay the groundwork for the use of destabilized domains in retinal pigment epithelium (RPE) cells in vivo and in this context, demonstrate their utility for preventing inflammatory signaling.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacologia , NF-kappa B/antagonistas & inibidores , Epitélio Pigmentado da Retina/metabolismo , Tetra-Hidrofolato Desidrogenase/farmacologia , Trimetoprima/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores do Citocromo P-450 CYP2C8/química , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Domínios Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/química , Trimetoprima/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA