Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Chemosphere ; 362: 142726, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950750

RESUMO

A field population of Chrysoperla carnea was exposed for 17 generations to chlorfenapyr insecticide that resulted in 217-fold resistance compared to a susceptible strain. The overlapping of LC50 values in reciprocal crosses and their dominance values indicated that chlorfenapyr resistance was autosomal and incompletely dominant. The chi-square analysis of back-cross mortality confirmed the polygenic nature of chlorfenapyr resistance. The results of effective dominance of chlorfenapyr resistance indicated that resistance at the highest concentration was completely recessive. The realized heritability of chlorfenapyr resistance in the first 9, last 9, and a total of 18 generations was 0.28, 0.42, and 0.31, respectively. Furthermore, synergism results showed that both experimental synergists, PBO and DEF, did not synergize the toxicity of chlorfenapyr. In conclusion, C. carnea had been found to have autosomal, partially dominant, and polygenic chlorfenapyr resistance. Meaning that thereby resistance is inherited through multiple genes and is not limited to a single gene or sex-linked trait. These findings will help to develop an effective IPM model focusing on the simultaneous use of selective insecticides and resistant biocontrol agents to reduce the problem of resistance development in pest populations.


Assuntos
Insetos , Resistência a Inseticidas , Inseticidas , Piretrinas , Animais , Piretrinas/toxicidade , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Insetos/efeitos dos fármacos , Insetos/fisiologia , Agentes de Controle Biológico , Butóxido de Piperonila/toxicidade , Feminino
2.
J Agric Food Chem ; 72(27): 15077-15091, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920088

RESUMO

In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.


Assuntos
Inseticidas , Oximas , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Oximas/química , Animais , Relação Estrutura-Atividade , Estrutura Molecular , Insetos/efeitos dos fármacos , Insetos/química
3.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38885123

RESUMO

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Assuntos
Insetos , Microplásticos , Animais , Microplásticos/toxicidade , Insetos/efeitos dos fármacos , Plásticos/toxicidade , Ecossistema , Monitoramento Ambiental
4.
Environ Sci Pollut Res Int ; 31(31): 44205-44217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926311

RESUMO

The use of herbicides on crops often results in unintentional, low-dose exposure of non-target organisms, such as insects. While these exposures are increasingly known to alter the survival and physiology of insects, it remains unclear whether these effects can vary between populations and modify other fitness-related traits, such as behaviour and immunity. Here, we addressed these questions by testing the effects of sublethal exposure to a glyphosate-based herbicide (GBH) on the behaviour and immunity of European earwig males from six natural populations. We exposed each male to a dose of a common GBH (Roundup©) that was either recommended for crops, five times lower than that recommended for crops, or to a control solution. Twenty-four hours later, we measured the activity, boldness, and aggregation of each male. We then exposed them to an entomopathogenic fungus, monitored their survival for 6 weeks, and measured the immune response of the survivors. We found a condition-dependent effect of GBH exposure on male activity. Exposure to low doses induced a positive association between activity and weight, which was not observed in the high-dose and control groups. However, GBH had no effect on any of the other measured traits. All these results were consistent across the six populations tested, although we did find population-specific differences in almost all measurements on males. Further research is now needed to better understand the dose-response to GBH on male activity and its biological impact, as well as to evaluate the effectiveness of detoxification processes in this species. Overall, these results emphasise the importance of investigating the effects of herbicides on insects to expand our general understanding of the use and potential risks of plant protection products in integrated pest management programs.


Assuntos
Glicina , Glifosato , Herbicidas , Insetos , Herbicidas/toxicidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Masculino , Insetos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
5.
Sci Total Environ ; 942: 173626, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844229

RESUMO

Organic farming is considered the most sustainable form of modern soil cultivation. Yet it often relies on the use of chemical compounds that are not necessarily harmless for the surrounding wildlife. In this study, we tested the effects of realistic concentrations of copper sulphate-largely used in organic farming as a fungicide-on ecologically-relevant traits of the walking stick insect Bacillus rossius, a species commonly found in the proximity of cultivated fields across Europe. By using second-generation progeny of wild-caught parthenogenetic females bred in common gardens, we measured the impact of copper sulphate (CuSO4) on both the life-history (body condition, number of eggs, and hatching success) and behavioural traits (activity and maximum vertical speed) of the individuals. We observed strong negative effects of high, realistic concentrations of copper sulphate on most traits within 12 days of exposure, while effects were less evident at lower concentrations of the pollutant. Our results reveal that realistic concentrations of copper sulphate can compromise important traits that regulate both the survival and reproduction of animals in the wild, with such effects that are, however, dose dependent. We suggest that common practices in organic farming require further consideration on their ecological and evolutionary impact on wildlife.


Assuntos
Sulfato de Cobre , Agricultura Orgânica , Animais , Sulfato de Cobre/toxicidade , Feminino , Poluentes do Solo/toxicidade , Fungicidas Industriais/toxicidade , Insetos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Neópteros/fisiologia , Neópteros/efeitos dos fármacos
6.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892195

RESUMO

The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.


Assuntos
Insetos , Praguicidas , Animais , Insetos/efeitos dos fármacos , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
7.
Proc Biol Sci ; 291(2024): 20232811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864325

RESUMO

Pesticides have been identified as major drivers of insect biodiversity loss. Thus, the study of their effects on non-pest insect species has attracted a lot of attention in recent decades. In general toxicology, the 'gold standard' to assess the toxicity of a substance is to measure mass-specific LD50 (i.e. median lethal dose per unit body mass). In entomology, reviews attempting to compare these data across all available studies are lacking. To fill this gap in knowledge, we performed a systematic review of the lethality of imidacloprid for adult insects. Imidacloprid is possibly the most extensively studied insecticide in recent times, yet we found that little is comparable across studies, owing to both methodological divergence and missing estimates of body mass. By accounting for body mass whenever possible, we show how imidacloprid sensitivity spans across an apparent range of approximately six orders of magnitude across insect species. Very high variability within species can also be observed owing to differences in exposure methods and observation time. We suggest that a more comparable and comprehensive approach has both biological and economic relevance. Ultimately, this would help to identify differences that could direct research towards preventing non-target species from being negatively affected.


Assuntos
Imidazóis , Insetos , Inseticidas , Neonicotinoides , Nitrocompostos , Especificidade da Espécie , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Insetos/efeitos dos fármacos , Imidazóis/toxicidade , Dose Letal Mediana
8.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703356

RESUMO

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Assuntos
Esterases , Proteínas de Insetos , Insetos , Inseticidas , Malation , Animais , Drosophila melanogaster , Esterases/metabolismo , Esterases/genética , Esterases/química , Inativação Metabólica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Insetos/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Malation/metabolismo , Malation/química , Malation/toxicidade , Malation/farmacologia
10.
Ecology ; 105(5): e4306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590050

RESUMO

Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.


Assuntos
Lupinus , Pólen , Polinização , Pólen/química , Animais , Lupinus/química , Lupinus/fisiologia , Alcaloides , Flores/química , Abelhas/fisiologia , Insetos/fisiologia , Insetos/efeitos dos fármacos
11.
Chemosphere ; 356: 141819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575080

RESUMO

The comet assay allows the analysis of DNA damage caused by different genotoxins. This assay has recently gained interest because of its ease of studying the interactions of xenobiotics with different organisms. Chrysoperla externa (Hagen, 1861) is a species of great economic relevance because it is a predator of major agricultural pests during its larval stage. Neonicotinoids are the most important chemical class of insecticides introduced into markets. A previous imidacloprid toxicity assessment on C. externa showed that this neonicotinoid insecticide reduced the egg viability. The objective of this study was to analyze the genotoxicity of Confidor OD® (imidacloprid 20% a.i., LS, Bayer CropScience) on the biological control agent C. externa at DNA level using the comet assay as an ecotoxicological biomarker. A comet assay protocol has been developed for this species at first time. For the bioassays, the commercial product formulated Confidor OD® was used at two concentrations: 100 and 180 mg/l of the active ingredient. Selected eggs were dipped in a Confidor OD® solution for 15 s. Descriptors evaluated in the comet assay were damage index, % DNA damage, and tail length. The damage index did not show any significant differences between the different concentrations evaluated, but differences were observed for tail length, because at higher concentrations of Confidor OD®, there were greater DNA breaks. The DNA of the cells from treated eggs analyzed at 48 h and 96 h of development showed the same % DNA damage; that is, they had no recovery capacity. Application of Confidor OD® to C. externa eggs produced irreparable breaks at the DNA level. The technique adjusted for C. externa can be used in other beneficial insects to study pesticide genotoxicity using a comet assay.


Assuntos
Ensaio Cometa , Dano ao DNA , Insetos , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Dano ao DNA/efeitos dos fármacos , Inseticidas/toxicidade , Insetos/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Mutagênicos/toxicidade , Larva/efeitos dos fármacos
12.
Curr Opin Insect Sci ; 63: 101184, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458436

RESUMO

The continuous use of insecticides over the last eight decades has led to the development of resistance to these insecticides. Research in the last few decades showed that the mechanisms underlying resistance are diverse but can generally be classified under several modes of resistance such as target-site resistance, metabolic resistance, and penetration resistance. In this review, we highlight new discoveries in insecticide resistance research made over the past few years, including an emerging new mode of resistance, sequestration resistance, where the overexpression of olfactory proteins binds and sequesters insecticides in resistant strains, as well as recent research on how posttranscriptional regulation can impact resistance. Future research will determine the generality of these emerging mechanisms across insect species.


Assuntos
Insetos , Resistência a Inseticidas , Inseticidas , Resistência a Inseticidas/genética , Animais , Insetos/efeitos dos fármacos , Insetos/genética , Inseticidas/farmacologia
14.
Pest Manag Sci ; 80(6): 2991-2999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38312069

RESUMO

BACKGROUND: Fusarium species are responsible for Fusarium head blight (FHB) in wheat, resulting in yield losses and mycotoxin contamination. Deoxynivalenol (DON) and enniatins (ENNs) are common mycotoxins produced by Fusarium, affecting plant, animal and human health. Although DON's effects have been widely studied, limited research has explored the impact of ENNs on insects. This study examines the influence of DON and enniatin B (ENB), both singularly and in combination, on the wheat aphid Sitobion avenae and one of its predators, the lacewing Chrysoperla carnea. RESULTS: When exposed to DON (100 mg L-1) or DON + ENB (100 mg L-1), S. avenae exhibited significantly increased mortality compared to the negative control. ENB (100 mg L-1) had no significant effect on aphid mortality. DON-treated aphids showed increasing mortality from 48 to 96 h. A dose-response relationship with DON revealed significant cumulative mortality starting at 25 mg L-1. By contrast, C. carnea larvae exposed to mycotoxins via cuticular application did not show significant differences in mortality when mycotoxins were dissolved in water but exhibited increased mortality with acetone-solubilized DON + ENB (100 mg L-1). Feeding C. carnea with aphids exposed to mycotoxins (indirect exposure) did not impact their survival or predatory activity. Additionally, the impact of mycotoxins on C. carnea was observed only with acetone-solubilized DON + ENB. CONCLUSIONS: These findings shed light on the complex interactions involving mycotoxins, aphids and their predators, offering valuable insights for integrated pest management strategies. Further research should explore broader ecological consequences of mycotoxin contamination in agroecosystems. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Depsipeptídeos , Tricotecenos , Animais , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Tricotecenos/toxicidade , Depsipeptídeos/farmacologia , Comportamento Predatório/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Triticum , Insetos/efeitos dos fármacos , Cadeia Alimentar , Fusarium/efeitos dos fármacos
15.
Pest Manag Sci ; 80(7): 3088-3097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407557

RESUMO

In Australia, macadamia orchards are attacked by four main insect pest groups. Management and control of three of these key pests currently relies on broad-spectrum insecticides whose long-term future is questionable. Of the 23 insecticides registered for use in macadamia in Australia, 19 face issues affecting their availability and 12 are presently not approved in the EU, the USA or Canada. These international markets may refuse produce that does not adhere to their own insecticide use standards, hence Australian produce may be excluded from market access. Many of the potential replacement integrated pest management methods of pest control are generally considered less effective by the industry and have not been adopted. There are 17 insect pest groups identified by the industry, any of which have potential to become major problems if broad-spectrum insecticide options become unavailable. Thirteen pest groups need urgent attention as they are at risk of losing current effective control methods, and no replacement solutions have yet been developed. The lag period for research and development to identify new chemical and biological control solutions means there is now an urgent need for the macadamia industry to craft a strategy for sustainable pest management for each pest. Critically, this industry strategy needs to address the vulnerabilities identified in this paper, identify potential solutions for any cases of market failure and consider funding mechanisms to address these gaps. On economic and sustainability grounds, potential biological control options should be explored, especially in cases where insecticide control options are vulnerable. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Controle de Insetos , Inseticidas , Macadamia , Animais , Controle de Insetos/métodos , Austrália , Insetos/efeitos dos fármacos
16.
Mini Rev Med Chem ; 24(14): 1308-1322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275028

RESUMO

Medicinal insects play an important role in the treatment of refractory diseases due to their unique and rich pharmacological activities. However, compared to plants, microorganisms, and marine organisms, medicinal insects have been largely ignored. Some small molecules isolated from insects are known to have defensive effects, but their majority roles remain unknown. In-depth research on the small molecules of medicinal insects has been conducted in recent years. Then alkaloids, dopamine derivatives, nucleoside derivatives, and other components are obtained. Among them, dopamine derivatives are a unique class of components from medicinal insects. Thus, we present a comprehensive overview of chemical structures and biological activities of dopamine derivatives from some medicinal insects, which will bring more attention to other researchers for further chemical and biological investigations on the unique dopamine derivatives as well as medicinal insects.


Assuntos
Dopamina , Insetos , Animais , Dopamina/farmacologia , Dopamina/química , Dopamina/metabolismo , Insetos/efeitos dos fármacos , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
17.
Bol. latinoam. Caribe plantas med. aromát ; 17(5): 441-452, sept. 2018. tab
Artigo em Inglês | LILACS | ID: biblio-915687

RESUMO

Ectoparasitism in animals has become an issue of great concern that needs to be resolved to prevent huge economic losses occurring to livestock industry all over the world. Synthetic adrugs have been playing a major role in controlling ectoparasites, but their frequent and irrational use has resulted in drug resistance to routinely used chemicals and their residual effects on food and environment. Therefore, this approach of using chemical acaricides and insecticides is losing its popularity and effectiveness in controlling ectoparasites. So, the development of alternative approaches in ectoparasite management is currently required. Among alternative protocols, plants and their essential oils have played remarkable role in controlling different ectoparasites (ticks, flies, mites, lice) of veterinary importance. Essential oils have been proved to be cheaper, more effective and safer therapeautic agents against different ectoparasites of livestock importance.


En los animales el ectoparasitismo se ha convertido en un tema de gran preocupación que debe resolverse para evitar que se produzcan grandes pérdidas económicas para la industria ganadera en todo el mundo. Los aditivos sintéticos han desempeñado un papel importante en el control de los ectoparásitos, pero su uso frecuente e irracional ha dado como resultado la resistencia a los fármacos utilizados habitualmente y efectos residuales sobre los alimentos y el medio ambiente. Por lo tanto, el enfoque basado en el uso de acaricidas e insecticidas químicos está perdiendo popularidad y efectividad en el control de los ectoparásitos. Por lo tanto, actualmente se requiere el desarrollo de enfoques alternativos en el manejo de ectoparásitos. Entre los protocolos alternativos, las plantas y sus aceites esenciales han jugado un papel notable en el control de diferentes ectoparásitos (garrapatas, moscas, ácaros, piojos) de importancia veterinaria. Se ha demostrado que los aceites esenciales son agentes terapéuticos más baratos, más efectivos y más seguros contra diferentes ectoparásitos de importancia ganadera.


Assuntos
Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Acaricidas/farmacologia , Inseticidas/farmacologia , Insetos/efeitos dos fármacos , Medicina Veterinária , Ácaros/efeitos dos fármacos
18.
Braz. j. biol ; 66(1a): 35-44, Feb. 2006. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-426264

RESUMO

As assembléias de insetos aquáticos e edáficos de três igarapés da Amazônia Central foram utilizadas para avaliar o impacto sofrido por um deles (igarapé Cururu), após um vazamento de óleo derivado de petróleo, ocorrido em agosto de 1999. O igarapé Cururu já era impactado pelo despejo de esgoto doméstico. A avaliação desses sistemas foi realizada em quatro diferentes períodos do ciclo hidrológico da região (vazante, seca, enchente e cheia), entre setembro de 2000 e maio de 2001. Os insetos foram coletados com draga Eckman, rede entomológica aquática e trado, e utilizados para estimar a riqueza taxonômica (nível de família) e a densidade de insetos em cada sistema. Os efeitos de anóxia e os efeitos da eutroficação foram mensurados pelas médias de concentração de oxigênio dissolvido, nitrogênio total e fósforo total, estimadas nos três sistemas. A riqueza e abundância da fauna de insetos foram maiores no igarapé Cristalino (não impactado) do que nos igarapés Bom Jardim (impactado pelo despejo de esgoto) e Cururu, com exceção das amostragens de insetos litorâneos. A concentração do oxigênio dissolvido no igarapé Cururu foi menor do que nos outros dois sistemas, enquanto as concentrações de nitrogênio total e fósforo total no igarapé Cururu foram maiores. Esses elementos tiveram valores inversos no igarapé Cristalino e intermediários no igarapé Bom Jardim. As concentrações de oxigênio dissolvido, nitrogênio total e fósforo total refletem as modificações provocadas pela eutroficação antropogênica nos sistemas Bom Jardim e Cururu. Isso ocorreu devido à liberação de efluentes domésticos pelas comunidades locais e pelo óleo introduzido no igarapé Cururu, influenciando negativamente a riqueza e abundância de insetos nesses igarapés.


Assuntos
Animais , Monitoramento Ambiental/métodos , Insetos/efeitos dos fármacos , Petróleo/efeitos adversos , Rios/química , Esgotos/efeitos adversos , Poluição Química da Água/efeitos adversos , Brasil , Eutrofização , Insetos/classificação , Nitrogênio/análise , Oxigênio/análise , Densidade Demográfica , Fósforo/análise , Estações do Ano
20.
Acta bioquím. clín. latinoam ; 32(3): 387-95, sept. 1998. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-235068

RESUMO

El surgimiento de resistencia en poblaciones de insectos es uno de los efectos indeseables asociados al uso de insecticidas, y es un buen ejemplo del modo en que ocurren los procesos microevolutivos. En 1908 se documentó por primera vez la existencia de insectos resistentes a insecticidas. Ahora se conocen casos de resistencia en más de 500 especies de artrópodos. Los principales mecanismos que confieren resistencia a insecticidas son penetración cuticular reducida, metabolismo degradativo aumentado y reducción en la susceptibilidad de los sitios de acción. Los métodos de la biología molecular permiten identificar las bases moleculares de esos mecanismos. El propósito de este artículo es reseñar el conocimiento disponible acerca de la biología molecular de la resistencia a insecticidas: mutaciones puntuales en genes de acetilcolinesterasa (Drosophila melanogaster) y del receptor de GABA (varias especies), inserciones en genes de transferasas (D. melanogaster) y del citocromo P450 (D. melanogaster), amplificación de genes de esterasas (Myzus persicae y Culex pipiens / quinquefasciatus complex), cambios que afectan la expresión del gen del citocromo P450 (Musca domestica), y una mutación ligada al gen del canal de sodio dependiente de voltaje (M. domestica)


Assuntos
Resistência a Inseticidas/genética , Inseticidas/efeitos adversos , Insetos/efeitos dos fármacos , Controle de Pragas/normas , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/genética , Aedes/efeitos dos fármacos , Culicidae/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster/efeitos dos fármacos , Esterases/efeitos dos fármacos , Esterases/genética , Controle de Insetos/normas , Controle de Insetos/tendências , Inseticidas/classificação , Moscas Domésticas , Oxirredutases/efeitos dos fármacos , Oxirredutases/genética , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/genética , Transferases/efeitos dos fármacos , Transferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA