Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(8): 1799-1812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899470

RESUMO

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.


Assuntos
Aterosclerose , Adesão Celular , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides , Talina , Animais , Talina/metabolismo , Talina/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Macrófagos/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/imunologia , Doenças da Aorta/prevenção & controle , Masculino , Antígenos CD18/metabolismo , Antígenos CD18/genética , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/genética , Monócitos/metabolismo , Monócitos/imunologia , Placa Aterosclerótica , Camundongos , Células Cultivadas , Aorta/patologia , Aorta/metabolismo , Transdução de Sinais
2.
Front Biosci (Landmark Ed) ; 29(6): 219, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38940032

RESUMO

BACKGROUND: Rheumatic heart disease (RHD) is caused by inflammatory cells mistakenly attacking the heart valve due to Group A Streptococcus (GAS) infection, but it is still unclear which cells or genes are involved in the process of inflammatory cells infiltrating the valve. Inflammatory infiltration into the target tissue requires an increase in the expression of phosphorylated vascular endothelial-cadherin (p-VE-cad), p-VE-cad can increase the endothelial permeability and promote the migration of inflammatory cells across the endothelium. P-VE-cad is potentially regulated by RAS-related C3 botulinum substrate 1 (RAC1), together with phosphorylated proline-rich tyrosine kinase 2 (p-PYK2). While RAC1/p-PYK2/p-VE-cad is triggered by the activation of vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 is related to M1 macrophages adhering to the endothelium via very late antigen 4 (VLA4). Inflammatory infiltration into the valve is extremely important in the early pathogenesis of RHD. However, there is no relevant research on whether M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad is involved in RHD; therefore, what we explored in this study was whether M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad is involved. METHODS: We established a rat model of RHD and a cell model of M1 macrophage and endothelial cell cocultivation. Subsequently, we measured the degree of inflammatory cell infiltration, the levels of IL-6/IL-17, the degree of fibrosis (COL3/1), and the expression levels of fibrosis markers (FSP1, COL1A1 and COL3A1) in the heart valves of RHD rats. Additionally, we detected the expression of M1/M2 macrophage biomarkers in rat model and cell model, as well as the expression of M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad. We also tested the changes in endothelial permeability after coculturing M1 macrophages and endothelial cells. RESULTS: Compared to those in the control group, the levels of inflammatory cell infiltration and fibrotic factors in the heart valves of RHD rats were significantly higher; the expression of M1 macrophage biomarkers (iNOS, CD86 and TNF-α) in RHD rats was significantly higher; and significantly higher than the expression of M2 macrophage biomarkers (Arg1 and TGF-ß). And the expression levels of VLA4/VCAM-1 and RAC1/p-PYK2/p-VE-cad in the hearts of RHD rats were significantly higher. At the cellular level, after coculturing M1 macrophages with endothelial cells, the expression levels of VLA4/VCAM-1 and RAC1/p-PYK2/p-VE-cad were significantly higher, and the permeability of the endothelium was significantly greater due to cocultivation with M1 macrophages. CONCLUSIONS: All the results suggested that M1 macrophages and the VLA4/VCAM-1 pathway are potentially involved in the process of inflammatory infiltration in RHD.


Assuntos
Macrófagos , Cardiopatia Reumática , Molécula 1 de Adesão de Célula Vascular , Animais , Cardiopatia Reumática/metabolismo , Cardiopatia Reumática/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Macrófagos/metabolismo , Ratos , Integrina alfa4beta1/metabolismo , Masculino , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Transdução de Sinais , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/metabolismo , Modelos Animais de Doenças , Humanos
3.
Mol Pharm ; 21(6): 2960-2969, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38680059

RESUMO

Very late antigen-4 (VLA-4) is a transmembrane integrin protein that is highly expressed in aggressive forms of metastatic melanoma. A small-molecule peptidomimetic, LLP2A, was found to have a low pM affinity binding to VLA-4. Because LLP2A itself does not inhibit cancer cell proliferation and survival, it is an ideal candidate for the imaging and delivery of therapeutic payloads. An analog of [177Lu]Lu-labeled-LLP2A was previously investigated as a therapeutic agent in melanoma tumor-bearing mice, resulting in only a modest improvement in tumor growth inhibition, likely due to rapid clearance of the agent from the tumor. To improve the pharmacokinetic profile, DOTAGA-PEG4-LLP2A with a 4-(p-iodophenyl)butyric acid (pIBA) albumin binding moiety was synthesized. We demonstrate the feasibility of this albumin binding strategy by comparing in vitro cell binding assays and in vivo biodistribution performance of [177Lu]Lu-DOTAGA-PEG4-LLP2A ([177Lu]Lu-1) to the albumin binding [177Lu]Lu-DOTAGA-pIBA-PEG4-LLP2A ([177Lu]Lu-2). In vitro cell binding assay results for [177Lu]Lu-1 and [177Lu]Lu-2 showed Kd values of 0.40 ± 0.07 and 1.75 ± 0.40 nM, with similar Bmax values of 200 ± 6 and 315 ± 15 fmol/mg, respectively. In vivo biodistribution data for both tracers exhibited specific uptake in the tumor, spleen, thymus, and bone due to endogenous expression of VLA-4. Compound [177Lu]Lu-2 exhibited a much longer blood circulation time compared to [177Lu]Lu-1. The tumor uptake for [177Lu]Lu-1 was highest at 1 h (∼15%ID/g) and that for [177Lu]Lu-2 was highest at 4 h (∼23%ID/g). Significant clearance of [177Lu]Lu-1 from the tumor occurs at 24 h (<5%ID/g) while[177Lu]Lu-2 is retained for greater than 96 h (∼10%ID/g). An efficacy study showed that melanoma tumor-bearing mice receiving compound [177Lu]Lu-2 given in two fractions (2 × 14.8 MBq, 14 days apart) had a greater median survival time than mice administered a single 29.6 MBq dose of compound [177Lu]Lu-1, while a single 29.6 MBq dose of [177Lu]Lu-2 imparted hematopoietic toxicity. The in vitro and in vivo data show addition of pIBA to [177Lu]Lu-DOTAGA-PEG4-LLP2A slows blood clearance for a higher tumor uptake, and there is potential of [177Lu]Lu-2 as a theranostic in fractionated administered doses.


Assuntos
Lutécio , Radioisótopos , Animais , Camundongos , Distribuição Tecidual , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Humanos , Compostos Radiofarmacêuticos/farmacocinética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Feminino , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/antagonistas & inibidores , Albuminas , Peptídeos/química , Peptídeos/farmacocinética , Nanomedicina Teranóstica/métodos , Camundongos Endogâmicos C57BL , Dipeptídeos , Compostos de Fenilureia
5.
Reprod Biomed Online ; 48(3): 103646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290387

RESUMO

RESEARCH QUESTION: What is the relationship between ATG8 and integrin α4ß1, Talin-1, and Treg cell differentiation, and the effects on endometriosis (EMS)? DESIGN: First, the correlation between the ATG8, Talin-1, integrin α4ß1, and differentiation of Treg cells and EMS was examined in clinical samples. Human peripheral blood mononuclear cells (PBMC) and endometrial stromal cells were extracted and identified, oe-ATG8 and oe-integrin α4ß1 were transfected to overexpress ATG8 and integrin α4ß1, and Tregs cell differentiation and endometrial stromal cells (ESC) function were detected. In addition, the molecular mechanism by which ATG8 inhibited EMS disease progression at the molecular and animal levels was investigated. RESULTS: ATG8 expression was negatively correlated with positive proportion of Tregs cells (P = 0.0463). The expression of Talin-1 and integrin-α4ß1 (both P < 0.0001) in PBMC decreased significantly after oe-ATG8 transfection, whereas the Treg cells' positive rate significantly increased (P = 0.0003). The ESC proliferation, adhesion, migration, and invasion (all P < 0.0001) declined after co-culture with Treg cells that underwent oe-ATG8 transfection. The expression of Talin-1 (P = 0.0025) and integrin-α4ß1 (P = 0.0002) in PBMC increased significantly after oe-integrin α4ß1 and oe-ATG8 transfection. In addition, this transfection reversed the corresponding regulation of oe-ATG8 transfection. Finally, animal experiments in vivo confirmed that ATG8 inhibited EMS disease progression. CONCLUSION: The ATG8 regulated Treg cell differentiation and inhibited EMS formation by influencing the interaction between integrin α4ß1 and Talin-1.


Assuntos
Endometriose , Integrina alfa4beta1 , Animais , Feminino , Humanos , Integrina alfa4beta1/metabolismo , Linfócitos T Reguladores , Talina/genética , Talina/metabolismo , Leucócitos Mononucleares/metabolismo , Diferenciação Celular , Progressão da Doença , Adesão Celular
6.
J Crohns Colitis ; 18(7): 1162-1172, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243565

RESUMO

BACKGROUND AND AIMS: The G protein coupled receptor GPR15 is expressed on and functionally important for T cells homing to the large intestine. However, the precise mechanisms by which GPR15 controls gut homing have been unclear. Thus, we aimed to elucidate these mechanisms as well as to explore the potential of targeting GPR15 for interfering with T cell recruitment to the colon in inflammatory bowel disease [IBD]. METHODS: We used dynamic adhesion and transmigration assays, as well as a humanised in vivo model of intestinal cell trafficking, to study GPR15-dependent effects on gut homing. Moreover, we analysed GPR15 and integrin expression in patients with and without IBD, cross-sectionally and longitudinally. RESULTS: GPR15 controlled T cell adhesion to MAdCAM-1 and VCAM-1 upstream of α4ß7 and α4ß1 integrin, respectively. Consistently, high co-expression of these integrins with GPR15 was found on T cells from patients with IBD, and GPR15 also promoted T cell recruitment to the colon in humanised mice. Anti-GPR15 antibodies effectively blocked T cell gut homing in vitro and in vivo. In vitro data, as well as observations in a cohort of patients treated with vedolizumab, suggest that this might be more effective than inhibiting α4ß7. CONCLUSIONS: GPR15 seems to have a broad, but organ-selective, impact on T cell trafficking and is therefore a promising target for future therapy of IBD. Further studies are needed.


Assuntos
Adesão Celular , Doenças Inflamatórias Intestinais , Mucoproteínas , Receptores Acoplados a Proteínas G , Linfócitos T , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Camundongos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Mucoproteínas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Integrinas/metabolismo , Movimento Celular , Moléculas de Adesão Celular/metabolismo , Colo/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Integrina alfa4beta1/metabolismo , Imunoglobulinas/metabolismo , Feminino , Receptores de Peptídeos
7.
Clin Cancer Res ; 29(18): 3560-3562, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439706

RESUMO

CD49d, the alpha chain of the very late antigen-4 (VLA-4) integrin, has a negative prognostic impact in chronic lymphocytic leukemia treated with the Bruton's tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib. Despite BTK inhibition, VLA-4 remains inside-out activated via B-cell receptor, an activation dampened by phosphoinositide 3-kinase inhibitors. Evaluation of CD49d expression in patients starting BTK inhibitor therapy may improve their prognostic stratification. See related article by Alsadhan et al., p. 3612.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Integrina alfa4beta1/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Relevância Clínica , Fosfatidilinositol 3-Quinases
8.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298541

RESUMO

Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of ß2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4ß1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4ß1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4ß1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/ß hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4ß1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.


Assuntos
Neoplasias , Peptidomiméticos , Humanos , Integrina alfa4beta1/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Simulação de Acoplamento Molecular , Peptidomiméticos/farmacologia , Integrina beta1 , Ligantes , Integrinas/metabolismo , Adesão Celular , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37072216

RESUMO

OBJECTIVES: Natalizumab (NTZ), a monoclonal antibody against very late antigen-4 (VLA-4), is one of the most efficient therapies to prevent acute relapses in multiple sclerosis (MS). VLA-4 is the key adhesion molecule for peripheral immune cells, especially lymphocytes to enter the CNS. While its blockade thus virtually abrogates CNS infiltration of these cells, long-term exposure to natalizumab may also affect immune cell function. METHODS: In this study, we report that in patients with MS, NTZ treatment is associated with an enhanced activation status of peripheral monocytes. RESULTS: Expression of 2 independent activation markers, CD69 and CD150, was significantly higher on blood monocytes from NTZ-treated patients when compared with those from matched untreated patients with MS, while other properties such as cytokine production remained unchanged. DISCUSSION: These findings consolidate the concept that peripheral immune cells remain fully competent on NTZ treatment, an excellent asset rare among MS treatments. However, they also suggest that NTZ may exert nondesirable effects on the progressive aspect of MS, where myeloid cells and their chronic activation are attributed a prominent pathophysiologic role.


Assuntos
Esclerose Múltipla , Humanos , Natalizumab/farmacologia , Esclerose Múltipla/tratamento farmacológico , Integrina alfa4beta1/metabolismo , Monócitos
10.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119479, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100352

RESUMO

BACKGROUND: The large extracellular matrix protein SVEP1 mediates cell adhesion via integrin α9ß1. Recent studies have identified an association between a missense variant in SVEP1 and increased risk of coronary artery disease (CAD) in humans and in mice Svep1 deficiency alters the development of atherosclerotic plaques. However how SVEP1 functionally contributes to CAD pathogenesis is not fully understood. Monocyte recruitment and differentiation to macrophages is a key step in the development of atherosclerosis. Here, we investigated the requirement for SVEP1 in this process. METHODS: SVEP1 expression was measured during monocyte-macrophage differentiation in primary monocytes and THP-1 human monocytic cells. SVEP1 knockout THP-1 cell lines and the dual integrin α4ß1/α9ß1 inhibitor, BOP, were utilised to investigate the effect of these proteins in THP-1 cell adhesion, migration and cell spreading assays. Subsequent activation of downstream integrin signalling intermediaries was quantified by western blotting. RESULTS: SVEP1 gene expression increases in monocyte to macrophage differentiation in human primary monocytes and THP-1 cells. Using two SVEP1 knockout THP-1 cells we observed reduction in monocyte adhesion, migration, and cell spreading compared to control cells. Similar results were found with integrin α4ß1/α9ß1 inhibition. We demonstrate reduced activity of Rho and Rac1 in SVEP1 knockout THP-1 cells. CONCLUSIONS: SVEP1 regulates monocyte recruitment and differentiation phenotypes through an integrin α4ß1/α9ß1 dependent mechanism. GENERAL SIGNIFICANCE: These results describe a novel role for SVEP1 in monocyte behaviour relevant to CAD pathophysiology.


Assuntos
Integrina alfa4beta1 , Monócitos , Humanos , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Integrina alfa4beta1/metabolismo , Macrófagos/metabolismo
11.
J Med Chem ; 66(7): 5021-5040, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976921

RESUMO

α4ß1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4ß1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.


Assuntos
Integrina alfa4beta1 , Integrina beta1 , Integrina alfa4beta1/metabolismo , Peptídeos Cíclicos/farmacologia , Ligantes , Integrinas/metabolismo , Adesão Celular
12.
Respir Res ; 24(1): 9, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627690

RESUMO

We investigated the effects of vegetable glycerin (VG), a main e-cigarette constituent, on endotoxin-induced acute lung injury (ALI). Mice received intratracheal administration of 30% VG in phosphate buffered saline (PBS) vehicle or only PBS (control) for 4 days. On Day 5, mice received an intratracheal instillation of lipopolysaccharide (LPS) (LPS group and VG + LPS group) or PBS (VG group and control group). Lung histopathology, expression of chemokine receptors, and regulatory signaling were analyzed 24 h after the Day 5 treatment. VG significantly increased ALI-associated histopathological and fibrotic changes in both the VG group and LPS-induced ALI mice (VG + LPS group). Immunohistochemistry (IHC) and western blot analyses revealed that VG administration resulted in upregulation of neutrophil markers [lymphocyte antigen 6 complex locus G6D (Ly6G) and myeloperoxidase (MPO)] as well as upregulation of the expression of transforming growth factor-ß (TGF-ß), a central mediator of fibrogenesis, in the lungs of both VG and VG + LPS groups. VG enhanced the expression of adhesion molecules [very late antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1)] and increased activation of p38 mitogen-activated protein kinase (p38 MAPK) to prompt neutrophil recruitment in the lungs of mice with ALI. Intraperitoneal administration of a p38 inhibitor attenuated these histopathological changes significantly as well as VG-induced upregulation in expression of Ly6G, MPO, VLA-4, VCAM-1, TGF-ß, and collagen-1 in mice with ALI. In conclusion, VG enhances neutrophil chemotaxis and fibrosis and it amplifies the inflammatory response associated with LPS-induced ALI in the lungs via enhancement of p38 MAPK activity.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Fibrose , Glicerol/efeitos adversos , Integrina alfa4beta1/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Neutrófilos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
J Alzheimers Dis ; 91(4): 1541-1555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641679

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE: We explored the reasons for neuron loss following CCH. METHODS: Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4ß1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS: We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION: Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.


Assuntos
Isquemia Encefálica , Demência Vascular , Molécula 1 de Adesão de Célula Vascular , Animais , Ratos , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/metabolismo , Integrina alfa4beta1/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
J Biol Chem ; 299(1): 102765, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470423

RESUMO

Hyperlipidemia characterized by high blood levels of free fatty acids (FFAs) is important for the progression of inflammatory cardiovascular diseases. Integrin ß1 is a transmembrane receptor that drives various cellular functions, including differentiation, migration, and phagocytosis. However, the underlying mechanisms modifying integrin ß1 protein and activity in mediating monocyte/macrophage adhesion to endothelium remain poorly understood. In this study, we demonstrated that integrin ß1 protein underwent S-nitrosylation in response to nitrosative stress in macrophages. To examine the effect of elevated levels of FFA on the modulation of integrin ß1 expression, we treated the macrophages with a combination of oleic acid and palmitic acid (2:1) and found that FFA activated inducible nitric oxide synthase/nitric oxide and increased the integrin ß1 protein level without altering the mRNA level. FFA promoted integrin ß1 S-nitrosylation via inducible nitric oxide synthase/nitric oxide and prevented its degradation by decreasing binding to E3 ubiquitin ligase c-Cbl. Furthermore, we found that increased integrin α4ß1 heterodimerization resulted in monocyte/macrophage adhesion to endothelium. In conclusion, these results provided novel evidence that FFA-stimulated N--O stabilizes integrin ß1via S-nitrosylation, favoring integrin α4ß1 ligation to promote vascular inflammation.


Assuntos
Células Endoteliais , Ácidos Graxos não Esterificados , Monócitos , Ácidos Graxos não Esterificados/metabolismo , Integrina alfa4beta1/metabolismo , Monócitos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Integrina beta1/metabolismo , Estabilidade Proteica , Células Endoteliais/metabolismo , Ligação Proteica , Estresse Fisiológico
15.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35878016

RESUMO

Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-ß production in murine pDCs. This process is mediated by α4ß1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-ß induction. The SLAYGLR-mediated α4 integrin/IFN-ß axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-ß-expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-ß axis may be implicated in a wide array of immune responses.


Assuntos
Células Dendríticas , Integrina alfa4beta1 , Interferon beta , Motivos de Aminoácidos , Animais , Células Dendríticas/metabolismo , Integrina alfa4beta1/metabolismo , Interferon beta/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Osteopontina/metabolismo , Receptores Toll-Like/metabolismo
16.
Eur J Nucl Med Mol Imaging ; 49(12): 4156-4170, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790537

RESUMO

PURPOSE: γδ T cell-based immunotherapy has been rolled out as a promising treatment strategy for malignant tumors due to their potent anti-tumor cytotoxicity, ease of expansion, and unrestricted MHC feature. However, the dynamics and outcomes of γδ T cells in tumor sites are poorly understood. Reported strategies rely on ex vivo biolabeling, significantly limiting the application of γδ T cell molecular imaging. Herein, we investigated whether VLA-4 (very late antigen-4), a crucial component in the effective trafficking of lymphocytes, could serve as a biomarker to non-invasively visualize γδ T cells. METHODS: VLA-4-targeted tracer, 68 Ga-LLP2A, was evaluated in MDA-MB-231- and A549-bearing mice with adoptive transfer of γδ T cells by longitudinal PET/CT imaging. Imaging data were verified by ex vivo biodistribution studies, and the co-localization of CD3 and VLA-4 was validated by immunohistochemistry studies. RESULTS: 68 Ga-LLP2A showed high specificity to VLA-4-expressing γδ T cells in both in vitro and tumor-bearing mice with adoptive transfer of γδ T cells. Longitudinal PET imaging of 68 Ga-LLP2A in tumor-bearing mice with adoptive transfer of γδ T cells showed an increasing tumor tracer uptake, revealing the tumor-specific homing of γδ T cells. The presence of VLA-4-expressing γδ T cells in tumors was confirmed via histological analysis. CONCLUSION: To the best of our knowledge, we reported the first molecular probe, 68 Ga-LLP2A, for in vivo imaging of γδ T cells in live tumors, which advances PET imaging of γδ T cells and supports the translation of imaging agents for immunotherapeutic monitoring.


Assuntos
Integrina alfa4beta1 , Melanoma Experimental , Animais , Linhagem Celular Tumoral , Integrina alfa4beta1/metabolismo , Camundongos , Sondas Moleculares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Linfócitos T/metabolismo , Distribuição Tecidual
17.
Matrix Biol ; 111: 133-152, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764213

RESUMO

Alterations in extracellular matrix (ECM) components that modulate inflammatory cell behavior have been shown to serve as early starters for multifactorial diseases such as fibrosis and cancer. Here, we demonstrated that loss of the ECM glycoprotein EMILIN-1 alters the inflammatory context in skin during IMQ-induced psoriasis, a disease characterized by a prominent inflammatory infiltrate and alteration of vessels that appear dilated and tortuous. Abrogation of EMILIN-1 expression or expression of the EMILIN-1 mutant E933A impairs macrophage polarization and leads to imbalanced tissue homeostasis. We found that EMILIN-1 deficiency is associated with dilated lymphatic vessels, increased macrophage recruitment and psoriasis severity. Importantly, the null or mutant EMILIN-1 background was characterized by the induction of a myofibroblast phenotype, which in turn drove macrophages towards the M1 phenotype. By using the transgenic mouse model carrying the E933A mutation in the gC1q domain of EMILIN-1, which abolishes the interaction with α4- and α9-integrins, we demonstrated that the observed changes in TGFß signaling were due to both the EMI and gC1q domains of EMILIN-1. gC1q may exert multiple functions in psoriasis, in the context of a final, more consistent inflammatory condition by controlling skin homeostasis via interaction with both keratinocytes and fibroblasts, influencing non-canonical TGFß signaling, and likely acting on lymphatic vessel structure and function. The analyses of human psoriatic lesions, in which lower levels of EMILIN-1 were present with a very rare association with lymphatic vessels, support the multifaceted role of this ECM component in the skin inflammatory scenario.


Assuntos
Integrina alfa4beta1 , Glicoproteínas de Membrana , Psoríase , Animais , Humanos , Integrina alfa4beta1/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Psoríase/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628269

RESUMO

Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4ß1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and ß1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer.


Assuntos
Antígeno Ca-125 , Carcinoma Ductal Pancreático , Quinase 1 de Adesão Focal , Integrina alfa4beta1 , Proteínas de Membrana , Neoplasias Pancreáticas , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina alfa4beta1/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Polissacarídeos/metabolismo
19.
Oncogene ; 41(16): 2303-2314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35256780

RESUMO

Interferon regulatory factor 7 (IRF7) is widely studied in inflammatory models. Its effects on malignant progression have been documented mainly from the perspective of the microenvironment. However, its role in leukemia has not been established. Here we used MLL-AF9-induced acute myeloid leukemia (AML) mouse models with IRF7 knockout or overexpression and xenograft mouse models to explore the intrinsic effects of IRF7 in AML. AML-IRF7-/- mice exhibited accelerated disease progression with intracerebral invasion of AML cells. AML-IRF7-/- cells showed increased proliferation and elevated leukemia stem cell (LSC) levels. Overexpression of IRF7 in AML cells decreased cell proliferation and LSC levels. Furthermore, overexpression of transforming growth-interacting factor 1 (TGIF1) rescued the enhanced proliferation and high LSC levels caused by IRF7 deficiency. Moreover, upregulation of vascular cell adhesion molecule 1 (VCAM1), which correlated with high LSC levels, was detected in AML-IRF7-/- cells. In addition, blocking VCAM1-very late antigen 4 (VLA-4) axis delayed disease progression and attenuated intracerebral invasion of AML cells. Therefore, our findings uncover the intrinsic effects of IRF7 in AML and provide a potential strategy to control central nervous system myeloid leukemia.


Assuntos
Integrina alfa4beta1 , Fator Regulador 7 de Interferon , Leucemia Mieloide Aguda , Animais , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Homeodomínio/metabolismo , Humanos , Integrina alfa4beta1/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Repressoras/metabolismo , Microambiente Tumoral/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Sci Rep ; 12(1): 30, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996933

RESUMO

Multiple myeloma (MM) is a cancer of bone marrow (BM) plasma cells, which is increasingly treatable but still incurable. In 90% of MM patients, severe osteolysis results from pathological interactions between MM cells and the bone microenvironment. Delineating specific molecules and pathways for their role in cancer supportive interactions in the BM is vital for developing new therapies. Very Late Antigen 4 (VLA4, integrin α4ß1) is a key player in cell-cell adhesion and signaling between MM and BM cells. We evaluated a VLA4 selective near infrared fluorescent probe, LLP2A-Cy5, for in vitro and in vivo optical imaging of VLA4. Furthermore, two VLA4-null murine 5TGM1 MM cell (KO) clones were generated by CRISPR/Cas9 knockout of the Itga4 (α4) subunit, which induced significant alterations in the transcriptome. In contrast to the VLA4+ 5TGM1 parental cells, C57Bl/KaLwRij immunocompetent syngeneic mice inoculated with the VLA4-null clones showed prolonged survival, reduced medullary disease, and increased extramedullary disease burden. The KO tumor foci showed significantly reduced uptake of LLP2A-Cy5, confirming in vivo specificity of this imaging agent. This work provides new insights into the pathogenic role of VLA4 in MM, and evaluates an optical tool to measure its expression in preclinical models.


Assuntos
Integrina alfa4beta1/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Medula Óssea/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Integrina alfa4beta1/química , Integrina alfa4beta1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mieloma Múltiplo/química , Mieloma Múltiplo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA