Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.773
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690736

RESUMO

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Assuntos
Gânglios Espinais , Proteínas de Membrana , Dor , Animais , Camundongos , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Dor/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Nociceptores/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia
2.
Sci Immunol ; 9(95): eadq0015, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701192

RESUMO

Initial imprinting by type 1 interferons shapes memory B cell generation in chronic viral infection.


Assuntos
Linfócitos B , Humanos , Animais , Linfócitos B/imunologia , Interferon Tipo I/imunologia , Células B de Memória/imunologia , Viroses/imunologia
3.
Nat Commun ; 15(1): 4153, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755212

RESUMO

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Assuntos
Proteínas ADAM , Infecções por Cardiovirus , Vírus da Encefalomiocardite , Imunidade Inata , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , Proteínas de Membrana , Camundongos Knockout , Miocardite , Animais , Vírus da Encefalomiocardite/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Miocardite/imunologia , Miocardite/virologia , Humanos , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transdução de Sinais/imunologia , Masculino , Células HEK293
4.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
5.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
6.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
DNA Viral , Herpesvirus Suídeo 1 , Imunidade Inata , Nucleotidiltransferases , Herpesvirus Suídeo 1/imunologia , Animais , Nucleotidiltransferases/metabolismo , DNA Viral/imunologia , Suínos , Humanos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Miosina não Muscular Tipo IIA/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Transdução de Sinais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Linhagem Celular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Células HEK293
7.
Trends Immunol ; 45(5): 322-324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644134

RESUMO

Interferons and central nervous system resident macrophages, microglia, are well-known for their respective roles in antiviral defense and phagocytosis. Using a classic experimental paradigm for examining activity-dependent neural plasticity, Escoubas, Dorman, et al. recently identified a role for microglial type I interferon signaling in the clearance of unwanted neurons during mouse brain development.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Encéfalo/imunologia , Encéfalo/crescimento & desenvolvimento , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Humanos , Transdução de Sinais/imunologia , Neurônios/imunologia , Neurônios/metabolismo , Fagocitose/imunologia , Plasticidade Neuronal/imunologia
8.
J Virol ; 98(5): e0001624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563732

RESUMO

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Assuntos
Calcineurina , Cálcio , Imunidade Inata , Interferon Tipo I , Vírus da Doença de Newcastle , Proteínas Serina-Treonina Quinases , Replicação Viral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Vírus da Doença de Newcastle/imunologia , Animais , Calcineurina/metabolismo , Humanos , Cálcio/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Fosforilação , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células HEK293
9.
J Clin Immunol ; 44(4): 104, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647550

RESUMO

PURPOSE: Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS: We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS: Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION: Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Células Mieloides , Feminino , Humanos , Masculino , Autoanticorpos/imunologia , Autoanticorpos/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Células Mieloides/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/imunologia
10.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
11.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642725

RESUMO

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Carpas/imunologia , Carpas/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixe-Zebra
12.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670412

RESUMO

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Assuntos
Proteínas de Peixes , Interferon Tipo I , Oncorhynchus mykiss , Poli I-C , Transdução de Sinais , Fator 3 Associado a Receptor de TNF , Animais , Oncorhynchus mykiss/imunologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Transdução de Sinais/imunologia , Poli I-C/farmacologia , Imunidade Inata , Regulação da Expressão Gênica/imunologia , Ubiquitinação , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/imunologia
13.
Sci Rep ; 14(1): 5731, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459088

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer. Despite decades of intense investigation, treatment options remain limited, and rapid recurrence with distant metastases remains a significant challenge. Cancer cell-intrinsic production of cytokines such as type I interferons (IFN-I) is a known potent modulator of response to therapy in many cancers, including TNBC, and can influence therapeutic outcome. Here, we report that, in TNBC systems, the aryl hydrocarbon receptor (AhR) suppresses IFN-I expression via inhibition of STImulator of Interferon Genes (STING), a key mediator of interferon production. Intratumoral STING activity is essential in mediating the efficacy of PARP inhibitors (PARPi) which are used in the treatment of cancers harboring BRCA1 deficiency. We find that, in TNBC cells, PARPi treatment activates AhR in a BRCA1 deficiency-dependent manner, thus suggesting the presence of a negative feedback loop aimed at modulating PARPi efficacy. Importantly, our results indicate that the combined inhibition of PARP and AhR is superior in elevating IFN-I expression as compared to PARPi-alone. Thus, AhR inhibition may allow for enhanced IFN-I production upon PARPi in BRCA1-deficient breast cancers, most of which are of TNBC origin, and may represent a therapeutically viable strategy to enhance PARPi efficacy.


Assuntos
Interferon Tipo I , Neoplasias de Mama Triplo Negativas , Humanos , Proteína BRCA2/genética , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
14.
Heart Lung ; 66: 31-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547583

RESUMO

BACKGROUND: Autoantibodies have been demonstrated to dampen the interferon (IFN) response in viral infections. Elevated levels of these preexisting autoantibodies (aAbs) decrease basal interferon levels, increasing susceptibility to severe infections. OBJECTIVES: This study aimed to evaluate the prevalence of type I IFN aAbs in both plasma and saliva from COVID-19 patients, analyze their neutralizing activity, and examine their associations with clinical outcomes, including the need for mechanical ventilation and in-hospital mortality. METHODS: Prospective analyses of patients admitted to intensive care units in three UAE hospitals from June 2020 to March 2021 were performed to measure aAbs using enzyme-linked immunosorbent assay (ELISA), assess aAbs activity via neutralization assays, and correlate aAbs with clinical outcomes. RESULTS: Type I IFN aAbs (α2 and/or ω) were measured in plasma samples from 213 ICU patients, and positive results were obtained for 20 % (n = 42) of the patients, with half exhibiting neutralizing activity. Saliva samples from a subgroup of 24 patients reflected plasma levels. In multivariate regression analyses, presence of type I IFN aAbs was associated with a higher need for mechanical ventilation (OR 2.58; 95 % CI 1.07-6.22) and greater in-hospital mortality (OR 2.40; 95 % CI 1.13 - 5.07; P = 0.022). Similarly, positive neutralizing aAbs (naAbs) were associated with a greater need for mechanical ventilation (OR 4.96; 95 % CI 1.12-22.07; P = 0.035) and greater odds of in-hospital mortality (OR 2.87; 95 % CI 1.05-7.89; P = 0.041). CONCLUSIONS: Type I IFN autoantibodies can be detected in noninvasive saliva samples, alongside conventional plasma samples, from COVID-19 patients and are associated with worse outcomes, such as greater mechanical ventilation needs and in-hospital mortality.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Saliva , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , Saliva/imunologia , Saliva/virologia , Feminino , Masculino , Autoanticorpos/sangue , Pessoa de Meia-Idade , Interferon Tipo I/imunologia , Estudos Prospectivos , Idoso , SARS-CoV-2/imunologia , Mortalidade Hospitalar , Estudos de Viabilidade , Ensaio de Imunoadsorção Enzimática , Respiração Artificial/estatística & dados numéricos , Unidades de Terapia Intensiva , Adulto
15.
Eur J Immunol ; 54(5): e2350682, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522030

RESUMO

SARS-CoV-2 typically causes mild symptoms in children, but evidence suggests that persistent immunopathological changes may lead to long COVID (LC). To explore the interplay between LC and innate immunity, we assessed the type I interferon (IFN-I) response in children and adolescents with LC symptoms (LC; n = 28). This was compared with age-matched SARS-CoV-2 recovered participants without LC symptoms (MC; n = 28) and healthy controls (HC; n = 18). We measured the mRNA expression of IFN-I (IFN-α/ß/ε/ω), IFN-I receptor (IFNAR1/2), and ISGs (ISG15, ISG56, MxA, IFI27, BST2, LY6E, OAS1, OAS2, OAS3, and MDA5) in PBMCs collected 3-6 months after COVID-19. LC adolescents (12-17 years) had higher transcript levels of IFN-ß, IFN-ε, and IFN-ω than HC, whereas LC children (6-11 years) had lower levels than HC. In adolescents, increased levels of IFN-α, IFN-ß, and IFN-ω mRNAs were found in the LC group compared with MC, while lower levels were observed in LC children than MC. Adolescents with neurological symptoms had higher IFN-α/ß mRNA levels than MC. LC and MC participants showed decreased expression of ISGs and IFNAR1, but increased expression of IFNAR2, than HC. Our results show age-related changes in the expression of transcripts involved in the IFN-I signaling pathway in children and adolescents with LC.


Assuntos
COVID-19 , Interferon Tipo I , SARS-CoV-2 , Transdução de Sinais , Humanos , Criança , Adolescente , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Masculino , COVID-19/imunologia , Feminino , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Imunidade Inata , Fatores Etários , Síndrome de COVID-19 Pós-Aguda , RNA Mensageiro/genética
16.
Science ; 383(6684): 705-707, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359108
17.
Nature ; 627(8005): 873-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418882

RESUMO

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Assuntos
Proteínas Nucleares , Nucleossomos , Nucleotidiltransferases , Proteólise , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Degrons , Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Vírus de DNA/metabolismo , DNA Viral/imunologia , DNA Viral/metabolismo , Imunidade Inata , Reconhecimento da Imunidade Inata , Interferon Tipo I/imunologia , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
18.
J Virol ; 98(2): e0203523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299844

RESUMO

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Microbioma Gastrointestinal , Animais , Bovinos , Camundongos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/complicações , Doença das Mucosas por Vírus da Diarreia Viral Bovina/microbiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Butiratos/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Diarreia , Vírus da Diarreia Viral Bovina/patogenicidade , Vírus da Diarreia Viral Bovina/fisiologia , Disbiose/complicações , Disbiose/microbiologia , Disbiose/virologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transplante de Microbiota Fecal , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças
19.
Nature ; 625(7996): 768-777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200313

RESUMO

Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.


Assuntos
Líquido Cefalorraquidiano , Vértebras Cervicais , Drenagem , Vasos Linfáticos , Animais , Camundongos , Envelhecimento/metabolismo , Líquido Cefalorraquidiano/metabolismo , Vértebras Cervicais/metabolismo , Células Endoteliais/metabolismo , Fluorescência , Genes Reporter , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Vasos Linfáticos/fisiologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Nariz/fisiologia , Faringe/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Análise de Célula Única , Transdução de Sinais
20.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289117

RESUMO

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Assuntos
Proteases 3C de Coronavírus , Infecções por Coronavirus , Deltacoronavirus , Interferon Tipo I , Peptídeos e Proteínas de Sinalização Intracelular , Doenças dos Suínos , Suínos , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus/enzimologia , Deltacoronavirus/metabolismo , Deltacoronavirus/patogenicidade , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Transdução de Sinais/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Fatores de Transcrição/metabolismo , Zoonoses Virais/imunologia , Zoonoses Virais/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA