Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.867
Filtrar
1.
Oncoimmunology ; 13(1): 2407532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351443

RESUMO

Immunotherapy has emerged as a promising approach for cancer treatment, with oncolytic adenoviruses showing power as immunotherapeutic agents. In this study, we investigated the immunotherapeutic potential of an adenovirus construct expressing CXCL9, CXCL10, or IL-15 in clear cell renal cell carcinoma (ccRCC) tumor models. Our results demonstrated robust cytokine secretion upon viral treatment, suggesting effective transgene expression. Subsequent analysis using resistance-based transwell migration and microfluidic chip assays demonstrated increased T-cell migration in response to chemokine secretion by infected cells in both 2D and 3D cell models. Flow cytometry analysis revealed CXCR3 receptor expression across T-cell subsets, with the highest percentage found on CD8+ T-cells, underscoring their key role in immune cell migration. Alongside T-cells, we also detected NK-cells in the tumors of immunocompromised mice treated with cytokine-encoding adenoviruses. Furthermore, we identified potential immunogenic antigens that may enhance the efficacy and specificity of our armed oncolytic adenoviruses in ccRCC. Overall, our findings using ccRCC cell line, in vivo humanized mice, physiologically relevant PDCs in 2D and patient-derived organoids (PDOs) in 3D suggest that chemokine-armed adenoviruses hold promise for enhancing T-cell migration and improving immunotherapy outcomes in ccRCC. Our study contributes to the development of more effective ccRCC treatment strategies by elucidating immune cell infiltration and activation mechanisms within the tumor microenvironment (TME) and highlights the usefulness of PDOs for predicting clinical relevance and validating novel immunotherapeutic approaches. Overall, our research offers insights into the rational design and optimization of viral-based immunotherapies for ccRCC.


Assuntos
Adenoviridae , Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Humanos , Animais , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Camundongos , Adenoviridae/genética , Adenoviridae/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Imunoterapia/métodos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/imunologia , Movimento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/imunologia , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linfócitos T CD8-Positivos/imunologia
2.
Sci Rep ; 14(1): 23671, 2024 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-39389985

RESUMO

Oncolytic virotherapy is emerging as a promising therapeutic avenue for cancer treatment, harnessing both innate and tumor-specific immune responses for targeted tumor elimination. In this study, we present a novel oncolytic virus (oHSV1-IL15B) derived from herpes simplex virus-1 (HSV-1), armed with IL-15/IL-15Rα complex, with a focus on treating colon cancer combined with oncolytic HSV-1 expressing anti-PD-1 antibody (oHSV1-aPD1). Results from our study reveal that recombinant oHSV-1 virus equipped with IL-15/IL-15Rα complex exhibited significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Notably, oHSV1-IL15B combined with oHSV-1-aPD1 demonstrates superior tumor inhibition and prolonged overall survival compared to oHSV1-mock and monotherapy groups. Further exploration highlights the impact of oHSV1-IL15B, oHSV-1-aPD1 and combined group on antitumor capacity, revealing a substantial increase in CD8+ T and CD4+ T cell proportions of CT26-bearing BALB/c mice and promoting apoptosis in tumor tissue. The study emphasizes the pivotal role of cytotoxic CD8+T cells in oncolytic virotherapy, demonstrating that recombinant oHSV1-IL15B combined with oncolytic HSV-1-aPD1 induces a robust tumor-specific T cell response. RNA sequence analysis highlighted oHSV1-IL15B combined with oHSV1-aPD1 improved tumors immune microenvironment on immune response, antiviral response-related genes and apoptosis-related genes, which contributed to anti-tumor immunotherapy. The findings underscore the promising antitumor activity achieved through the combination of IL-15/IL-15Rα complex and anti-PD-1 antibody with oHSV-1. This research opens avenues for diverse therapeutic strategies, suggesting the potential of synergistically utilizing cytokines and anti-PD-1 antibody with oncolytic viruses to enhance immunotherapy for cancer management.


Assuntos
Neoplasias do Colo , Herpesvirus Humano 1 , Interleucina-15 , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Herpesvirus Humano 1/genética , Interleucina-15/genética , Interleucina-15/imunologia , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Terapia Viral Oncolítica/métodos , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Feminino
3.
Sci Adv ; 10(39): eadq7006, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331702

RESUMO

Vaccination-induced protection against influenza is greatly diminished and increasingly heterogeneous with age. We investigated longitudinally (up to five time points) a cohort of 234 vaccinated >65-year-old vaccinees with adjuvanted vaccine FluAd across two independent seasons. System-level analyses of multiomics datasets measuring six modalities and serological data revealed that poor responders lacked time-dependent changes in response to vaccination as observed in responders, suggestive of systemic dysregulation in poor responders. Multiomics integration revealed key molecules and their likely role in vaccination response. High prevaccination plasma interleukin-15 (IL-15) concentrations negatively associated with antibody production, further supported by experimental validation in mice revealing an IL-15-driven natural killer cell axis explaining the suppressive role in vaccine-induced antibody production as observed in poor responders. We propose a subset of long-chain fatty acids as modulators of persistent inflammation in poor responders. Our findings provide a potential link between low-grade chronic inflammation and poor vaccination response and open avenues for possible pharmacological interventions to enhance vaccine responses.


Assuntos
Envelhecimento , Vacinas contra Influenza , Influenza Humana , Vacinas contra Influenza/imunologia , Animais , Humanos , Camundongos , Envelhecimento/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Idoso , Feminino , Masculino , Vacinação , Interleucina-15/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Idoso de 80 Anos ou mais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Eficácia de Vacinas
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273322

RESUMO

IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-ß, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-ß but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-ß potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.


Assuntos
Proliferação de Células , Antígenos de Histocompatibilidade Classe I , Interferon gama , Interleucina-10 , Interleucina-15 , Interleucina-17 , Linfócitos T , Fator de Crescimento Transformador beta , Humanos , Proliferação de Células/efeitos dos fármacos , Interferon gama/farmacologia , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-10/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/citologia , Células Cultivadas , Ativação Linfocitária/efeitos dos fármacos
5.
Emerg Microbes Infect ; 13(1): 2396868, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39239709

RESUMO

Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Linfócitos T CD4-Positivos/imunologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Interleucina-15 , Contagem de Linfócito CD4 , Senescência Celular/imunologia , Citocinas/metabolismo , Carga Viral
6.
Cell Rep Methods ; 4(9): 100857, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39260365

RESUMO

We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFßR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFßR2 in immune cells can enhance resistance to the suppressive TGF-ß signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFßR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFßR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-ß signaling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Interleucina-15 , Células Matadoras Naturais , Receptor do Fator de Crescimento Transformador beta Tipo II , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Diferenciação Celular , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Edição de Genes/métodos
7.
Int Immunopharmacol ; 142(Pt A): 112973, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217881

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by persistent immune cell activation and the overproduction of autoantibodies, affecting various organs such as joints, kidneys, and skin. Interleukin-15 (IL-15) is a pleiotropic cytokine that modulates immune cells of the innate and adaptive immune systems, playing a crucial role in the development of inflammatory and protective immune responses. However, the role of IL-15 in SLE pathogenesis and the therapeutic effects of IL-15 blockade on SLE remain unknown. In this study, we conducted flow cytometry analysis and identified a significant increase in the frequencies of IL-15+ and IL-15R+ cells in peripheral blood CD4+ T cells, CD8+ T cells, dendritic cells (DCs), monocytes, and natural killer (NK) cells of patients with SLE compared to healthy controls (HCs). Besides, we found elevated levels of serum IL-15 in SLE patients compared to HCs. Furthermore, we evaluted the effectiveness of IL-15 mAb treatment in a chronic graft-versus-host disease (cGVHD) mouse model of SLE. We observed that the IL-15 mAb treatment effectively reduced the frequencies of CD4+CD44hiCD62LloPD-1+CD153+ senescent CD4+ T cells, B220+CD11c+T-bet+ age-associated B cells (ABCs), Tfh cells, and germinal center (GC) B cells, alleviated lupus-associated manifestations such as serum anti-double-stranded DNA antibody (anti-dsDNA) and kidney injury in the SLE mouse model of cGVHD. These findings provide compelling preclinical evidence suggesting the pathogenic role of IL-15 in SLE and the therapeutic potential of IL-15 blockade in the treatment of SLE.


Assuntos
Interleucina-15 , Lúpus Eritematoso Sistêmico , Interleucina-15/sangue , Interleucina-15/metabolismo , Interleucina-15/imunologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/sangue , Animais , Feminino , Adulto , Camundongos , Masculino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/sangue , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Células Dendríticas/imunologia , Receptores de Interleucina-15/metabolismo , Linfócitos T CD4-Positivos/imunologia
8.
Nature ; 633(8028): 155-164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232147

RESUMO

Infectious, inflammatory and autoimmune conditions present differently in males and females. SARS-CoV-2 infection in naive males is associated with increased risk of death, whereas females are at increased risk of long COVID1, similar to observations in other infections2. Females respond more strongly to vaccines, and adverse reactions are more frequent3, like most autoimmune diseases4. Immunological sex differences stem from genetic, hormonal and behavioural factors5 but their relative importance is only partially understood6-8. In individuals assigned female sex at birth and undergoing gender-affirming testosterone therapy (trans men), hormone concentrations change markedly but the immunological consequences are poorly understood. Here we performed longitudinal systems-level analyses in 23 trans men and found that testosterone modulates a cross-regulated axis between type-I interferon and tumour necrosis factor. This is mediated by functional attenuation of type-I interferon responses in both plasmacytoid dendritic cells and monocytes. Conversely, testosterone potentiates monocyte responses leading to increased tumour necrosis factor, interleukin-6 and interleukin-15 production and downstream activation of nuclear factor kappa B-regulated genes and potentiation of interferon-γ responses, primarily in natural killer cells. These findings in trans men are corroborated by sex-divergent responses in public datasets and illustrate the dynamic regulation of human immunity by sex hormones, with implications for the health of individuals undergoing hormone therapy and our understanding of sex-divergent immune responses in cisgender individuals.


Assuntos
Testosterona , Pessoas Transgênero , Adulto , Feminino , Humanos , Masculino , Conjuntos de Dados como Assunto , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Caracteres Sexuais , Testosterona/efeitos adversos , Testosterona/imunologia , Testosterona/farmacologia , Testosterona/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
9.
Nano Lett ; 24(38): 11814-11822, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39282986

RESUMO

Natural killer (NK) cells offer profound advantages against tumor recurrence due to their unique immunological behavior. NK cell therapies associated with the antibody-dependent cell-mediated cytotoxicity (ADCC) effect have made remarkable progress while being limited by insufficient antibody binding and the exhausted state of NK cells in the postsurgical immunosuppressive microenvironment. Leveraging the adherence of PLT to tumor cells, we developed an exogenously implanted platelet (PLT)-based NK cell-driven system (PLT-IgG-IL15) to improve the identifiability of residual tumors with IgG antibody labeling for NK cells catching and engaging, which consequently restored the ADCC effect and promoted the recovery of their killing function. Furthermore, interleukin-15 (IL-15) participated in the augmentation of NK cell function. Collectively, PLT-IgG-IL15 served as an NK cell tumor cell engager as well as an NK cell charger, achieving a <40% recurrence rate in mouse tumor models.


Assuntos
Plaquetas , Interleucina-15 , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Plaquetas/imunologia , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/prevenção & controle , Citotoxicidade Celular Dependente de Anticorpos , Imunoglobulina G , Ativação Linfocitária/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Oncol Res ; 32(10): 1575-1587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308517

RESUMO

Background: Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma (MM) progression. Simultaneously, previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with common γ-chain family cytokines in vitro and during homeostatic proliferation. The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets up-regulating PD-1 and TIM-3 checkpoint molecules. Methods: The expression of CD25, CD122, CD127 common γ-chain cytokine receptors, phosphorylated signal transducer and activator of transcription-5 (pSTAT5) and eomesodermin (EOMES) was comparatively assessed with flow cytometry in PD-1- and TIM-3-negative and positive T cells before the conditioning and during the first post-transplant month in peripheral blood samples of MM patients. Results: Substantial proportions of PD-1- and TIM-3-positive T lymphocytes expressed common γ-chain cytokine receptors and pSTAT5. Frequencies of cytokine receptor expressing cells were significantly higher within TIM-3+ T cells compared to PD-1+TIM-3- subsets. Considerable proportions of both PD-1-/TIM-3-negative and positive CD8+ T cells express EOMES, while only moderate frequencies of CD4+ PD-1+/TIM-3+ T cells up-regulate this transcription factor. Besides, the surface presence of CD25 and intranuclear expression of EOMES in CD4+ T cells were mutually exclusive regardless of PD-1 and TIM-3 expression. The stimulation with common γ-chain cytokines up-regulates PD-1 and TIM-3 during the proliferation of initially PD-1/TIM-3-negative T cells but fails to expand initially PD-1+ and TIM-3+ T cell subsets in vitro. Conclusions: Both PD-1 and TIM-3 expressing T cells appear to be able to respond to homeostatic cytokine stimulation. Differences in common γ-chain cytokine receptor expression between PD-1+ and TIM-3+ T cells may reflect functional dissimilarity of these cell subsets. Checkpoint blockade appears to alleviate lymphopenia-induced proliferation of PD-1+ T cells but may raise the possibility of immune-mediated adverse events.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Mieloma Múltiplo , Receptor de Morte Celular Programada 1 , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Interleucina-7/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Regulação para Cima , Adulto , Receptores de Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Sci Adv ; 10(35): eadn0164, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39196934

RESUMO

Natural killer (NK) cells often become dysfunctional during tumor progression, but the molecular mechanisms underlying this phenotype remain unclear. To explore this phenomenon, we set up mouse lymphoma models activating or not activating NK cells. Both tumor types elicited type I interferon production, leading to the expression of a T cell exhaustion-like signature in NK cells, which included immune checkpoint proteins (ICPs). However, NK cell dysfunction occurred exclusively in the tumor model that triggered NK cell activation. Moreover, ICP-positive NK cells demonstrated heightened reactivity compared to negative ones. Furthermore, the onset of NK cell dysfunction was swift and temporally dissociated from ICPs induction, which occurred as a later event during tumor growth. Last, NK cell responsiveness was restored when stimulation was discontinued, and interleukin-15 had a positive impact on this reversion. Therefore, our data demonstrate that the reactivity of NK cells is dynamically controlled and that NK cell dysfunction is a reversible process uncoupled from the expression of ICPs.


Assuntos
Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Camundongos , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Interleucina-15/metabolismo , Linfoma/imunologia , Linfoma/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos
12.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39167075

RESUMO

Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-15 , Canais Iônicos , Tolerância a Radiação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Tolerância a Radiação/genética , Camundongos , Interleucina-15/metabolismo , Interleucina-15/genética , Linhagem Celular Tumoral , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Camundongos Endogâmicos C57BL , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Masculino , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Transdução de Sinais
13.
Mol Immunol ; 174: 11-17, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128414

RESUMO

Microglia play a major role in the immune defense system of the central nervous system and are activated in many neurological diseases. The immunomodulatory cytokine interleukin (IL)-15 is known to be involved in microglia response and inflammatory factors release. Neoprzewaquinone A (NEO) is an active compound isolated from Salvia miltiorrhiza Bunge. Our previous study has shown that NEO significantly inhibit the proliferation of IL-15-treated Mo7e cells. However, the role of NEO in the structure and function of IL-15-treated human microglial cells (HMC3) remains unclear. Thus, our study aimed to quantitatively analyze the beneficial effects of NEO on HMC3 cells following IL-15 treatment. The cell viability, phagocytosis, migration and energy metabolism were evaluated by Cell Counting Kit-8 (CCK8), scratch assay, pHrodo™ Red Zymosan BioParticles™ Conjugate, and Agilent Seahorse XF Cell Mito Test. Cephalothin (CEP) was selected as a positive drug because it has obvious inhibitory effect on IL-15 and IL-15Rɑ. Our results showed that IL-15 stimulated the proliferation, migration and phagocytosis of HMC3 cells in a time-dependent manner. Interestingly, NEO exhibited significant suppressive effects on these IL-15-induced changes, which were even superior to those observed with the CEP. Moreover, IL-15 treatment did not significantly alter energy metabolism, including glycolysis and mitochondrial respiration. NEO and CEP alone effectively reduced glycolysis, non-mitochondrial respiration, basal respiration, ATP turnover, respiration capacity, and H+ leak in HMC3 cells. Furthermore, NEO displayed a partial regulatory effect on mitochondrial function in IL-15-treated HMC3 cells. Our study confirms the effectively inhibition of NEO on IL-15-induced microglial activation and provides valuable insights into the therapeutic prospects of NEO in neuropsychiatric disorders associated with IL-15 and microglia.


Assuntos
Movimento Celular , Metabolismo Energético , Interleucina-15 , Microglia , Fagocitose , Humanos , Fagocitose/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
14.
Nat Immunol ; 25(10): 1820-1829, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39112631

RESUMO

Systemically administered cytokines are potent immunotherapeutics but can cause severe dose-limiting toxicities. To overcome this challenge, cytokines have been engineered for intratumoral retention after local delivery. However, despite inducing regression of treated lesions, tumor-localized cytokines often elicit only modest responses at distal untreated tumors. In the present study, we report a localized cytokine therapy that safely elicits systemic antitumor immunity by targeting the ubiquitous leukocyte receptor CD45. CD45-targeted immunocytokines have lower internalization rates relative to wild-type counterparts, leading to sustained downstream cis and trans signaling between lymphocytes. A single intratumoral dose of αCD45-interleukin (IL)-12 followed by a single dose of αCD45-IL-15 eradicated treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models without toxicity. Mechanistically, CD45-targeted cytokines reprogrammed tumor-specific CD8+ T cells in the tumor-draining lymph nodes to have an antiviral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Antígenos Comuns de Leucócito , Animais , Camundongos , Antígenos Comuns de Leucócito/metabolismo , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral , Feminino , Citocinas/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Interleucina-15/metabolismo
15.
Cancer Cell ; 42(8): 1450-1466.e11, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137729

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.


Assuntos
Neoplasias Encefálicas , Proteína delta de Ligação ao Facilitador CCAAT , Glioblastoma , Interleucinas , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Glioblastoma/imunologia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/imunologia , Humanos , Animais , Camundongos , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Adv ; 10(33): eadn5993, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141732

RESUMO

Skeletal muscle has gained recognition as an endocrine organ releasing myokines upon contraction during physical exercise. These myokines exert both local and pleiotropic health benefits, underscoring the crucial role of muscle function in countering obesity and contributing to the overall positive effects of exercise on health. Here, we found that exercise activates muscle p38γ, increasing locomotor activity through the secretion of interleukin-15 (IL-15). IL-15 signals in the motor cortex, stimulating locomotor activity. This activation of muscle p38γ, leading to an increase locomotor activity, plays a crucial role in reducing the risk of diabetes and liver steatosis, unveiling a vital muscle-brain communication pathway with profound clinical implications. The correlation between p38γ activation in human muscle during acute exercise and increased blood IL-15 levels highlights the potential therapeutic relevance of this pathway in treating obesity and metabolic diseases. These findings provide valuable insights into the molecular basis of exercise-induced myokine responses promoting physical activity.


Assuntos
Exercício Físico , Interleucina-15 , Músculo Esquelético , Interleucina-15/metabolismo , Músculo Esquelético/metabolismo , Humanos , Animais , Exercício Físico/fisiologia , Locomoção , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Masculino , Sistema de Sinalização das MAP Quinases , Obesidade/metabolismo
17.
Sci Immunol ; 9(98): eadn2717, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178275

RESUMO

The formation of memory T cells is a fundamental feature of adaptative immunity, allowing the establishment of long-term protection against pathogens. Although emerging evidence suggests that metabolic reprogramming is crucial for memory T cell differentiation and survival, the underlying mechanisms that drive metabolic rewiring in memory T cells remain unclear. Here, we found that up-regulation of the nuclear receptor peroxisome proliferator-activated receptor ß/δ (PPARß/δ) instructs the metabolic reprogramming that occurs during the establishment of central memory CD8+ T cells. PPARß/δ-regulated changes included suppression of aerobic glycolysis and enhancement of oxidative metabolism and fatty acid oxidation. Mechanistically, exposure to interleukin-15 and expression of T cell factor 1 facilitated activation of the PPARß/δ pathway, counteracting apoptosis induced by antigen clearance and metabolic stress. Together, our findings indicate that PPARß/δ is a master metabolic regulator orchestrating a metabolic switch that may be favorable for T cell longevity.


Assuntos
Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , PPAR delta , PPAR beta , Animais , PPAR beta/metabolismo , PPAR beta/imunologia , Linfócitos T CD8-Positivos/imunologia , PPAR delta/imunologia , PPAR delta/metabolismo , Camundongos , Memória Imunológica/imunologia , Células T de Memória/imunologia , Camundongos Knockout , Interleucina-15/imunologia , Interleucina-15/metabolismo , Camundongos Transgênicos , Reprogramação Metabólica , Receptores Citoplasmáticos e Nucleares
18.
J Clin Invest ; 134(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087476

RESUMO

NK cells are cytotoxic innate immune cells involved in antitumor immunity, and they provide a treatment option for patients with acute myeloid leukemia (AML). In this issue of the JCI, Cubitt et al. investigated the role of CD8α, a coreceptor present on approximately 40% of human NK cells. IL-15 stimulation of CD8α- NK cells induced CD8α expression via the RUNX3 transcription factor, driving formation of a unique induced CD8α (iCD8α+) population. iCD8α+ NK cells displayed higher proliferation, metabolic activity, and antitumor cytotoxic function compared with preexisting CD8α+ and CD8α- subsets. Therefore, CD8α expression can be used to define a potential dynamic spectrum of NK cell expansion and function. Because these cells exhibit enhanced tumor control, they may be used to improve in NK cell therapies for patients with AML.


Assuntos
Antígenos CD8 , Subunidade alfa 3 de Fator de Ligação ao Core , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Interleucina-15/imunologia , Interleucina-15/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
19.
Front Immunol ; 15: 1443096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176097

RESUMO

Introduction: Influenza virus infection can cause a range of clinical symptoms, including respiratory failure (RF) and even death. The mechanisms responsible for the most severe forms of the disease are not yet well understood. The objective is to assess the initial immune response upon admission and its potential impact on infection progression. Methods: We conducted a prospective observational study of patients with influenza virus infection who required admission to a tertiary hospital in the 2017/18 and 2018/19 flu seasons. Immune markers, surrogate markers of neutrophil activation, and blood levels of DNase I and Apolipoprotein-H (ApoH) were determined in the first serum sample available during hospital care. Patients were followed until hospital discharge or death. Initially, 792 patients were included. From this group, 107 patients with poor evolution were selected, and a random control group was matched by day of admission. Results: Patients with poor outcomes had significantly reduced ApoH levels, a soluble protein that regulate both complement and coagulation pathways. In multivariate analysis, low plasma levels of ApoH (OR:5.43; 2.21-13.4), high levels of C- reactive protein (OR:2.73: 1.28-5.4), hyperferritinemia (OR:2.83; 1.28-5.4) and smoking (OR:3.41; 1.04-11.16), were significantly associated with a worse prognosis. RF was independently associated with low levels of ApoH (OR: 5.12; 2.02-1.94), while high levels of IL15 behaved as a protective factor (OR:0.30; 0.12-0.71). Discussion: Therefore, in hospitalized influenza patients, a dysregulated early immune response is associated with a worse outcome. Adequate plasma levels of ApoH are protective against severe influenza and RF and High levels of IL15 protect against RF.


Assuntos
Biomarcadores , Influenza Humana , Interleucina-15 , Interleucina-8 , Humanos , Influenza Humana/imunologia , Influenza Humana/sangue , Masculino , Feminino , Biomarcadores/sangue , Prognóstico , Pessoa de Meia-Idade , Interleucina-15/sangue , Idoso , Estudos Prospectivos , Interleucina-8/sangue , Adulto
20.
BMC Cancer ; 24(1): 980, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118069

RESUMO

BACKGROUND: Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS: By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS: When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION: We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.


Assuntos
Herpesvirus Humano 4 , Linfócitos T Citotóxicos , Humanos , Linfócitos T Citotóxicos/imunologia , Herpesvirus Humano 4/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Interleucina-15/metabolismo , Interferon-alfa/metabolismo , Citotoxicidade Imunológica , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/patologia , Ativação Linfocitária/imunologia , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA