Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Lett ; 398: 69-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38909920

RESUMO

Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.


Assuntos
Ácido Aminossalicílico , Intoxicação por Chumbo , Intoxicação por Manganês , Humanos , Animais , Ácido Aminossalicílico/uso terapêutico , Intoxicação por Manganês/tratamento farmacológico , Intoxicação por Chumbo/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Manganês/toxicidade
2.
Behav Brain Res ; 465: 114969, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38548024

RESUMO

Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.


Assuntos
Intoxicação por Manganês , Doença de Parkinson , Ratos , Animais , Manganês/toxicidade , Óleo de Gergelim/farmacologia , Doença de Parkinson/tratamento farmacológico , Estresse Oxidativo , Intoxicação por Manganês/tratamento farmacológico , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA