Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Int J Biol Macromol ; 262(Pt 1): 130068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340920

RESUMO

Accurate pairing of amino acids and tRNAs is a prerequisite for faithful translation of genetic information during protein biosynthesis. Here we present the effects of proteome-wide mistranslation of isoleucine (Ile) by canonical valine (Val) or non-proteinogenic norvaline (Nva) in a genetically engineered Escherichia coli strain with an editing-defective isoleucyl-tRNA synthetase (IleRS). Editing-defective IleRS efficiently mischarges both Val and Nva to tRNAIle and impairs the translational accuracy of Ile decoding. When mistranslation was induced by the addition of Val or Nva to the growth medium, an Ile-to-Val or Ile-to-Nva substitution of up to 20 % was measured by high-resolution mass spectrometry. This mistranslation level impaired bacterial growth, promoted the SOS response and filamentation during stationary phase, caused global proteome dysregulation and upregulation of the cellular apparatus for maintaining proteostasis, including the major chaperones (GroES/EL, DnaK/DnaJ/GrpE and HtpG), the disaggregase ClpB and the proteases (Lon, HslV/HslU, ClpA, ClpS). The most important consequence of mistranslation appears to be non-specific protein aggregation, which is effectively counteracted by the disaggregase ClpB. Our data show that E. coli can sustain high isoleucine mistranslation levels and remain viable despite excessive protein aggregation and severely impaired translational fidelity. However, we show that inaccurate translation lowers bacterial resilience to heat stress and decreases bacterial survival at elevated temperatures.


Assuntos
Escherichia coli , Resiliência Psicológica , Escherichia coli/genética , Escherichia coli/metabolismo , Isoleucina , Proteoma/metabolismo , Agregados Proteicos , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
FEBS Lett ; 598(5): 521-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246751

RESUMO

Helicobacter pylori infection is a global health concern, affecting over half of the world's population. Acquiring structural information on pharmacological targets is crucial to facilitate inhibitor design. Here, we have determined the crystal structures of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in apo form as well as in complex with various substrates (Ile, Ile-AMP, Val, and Val-AMP) or an inhibitor (mupirocin). Our results provide valuable insights into substrate specificity, recognition, and the mechanism by which HpIleRS is inhibited by an antibiotic. Moreover, we identified Asp641 as a prospective regulatory site and conducted biochemical analyses to investigate its regulatory mechanism. The detailed structural information acquired from this research holds promise for the development of highly selective and effective inhibitors against H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Antibacterianos/farmacologia , Helicobacter pylori/enzimologia , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Estudos Prospectivos
3.
FEBS Lett ; 597(24): 3114-3124, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015921

RESUMO

Isoleucyl-tRNA synthetase (IleRS) links isoleucine to cognate tRNA via the Ile-AMP intermediate. Non-cognate valine is often mistakenly recognized as the IleRS substrate; therefore, to maintain the accuracy of translation, IleRS hydrolyzes Val-AMP within the synthetic site (pre-transfer editing). As this activity is not efficient enough, Val-tRNAIle is formed and hydrolyzed in the distant post-transfer editing site. A strictly conserved synthetic site residue Gly56 was previously shown to safeguard Ile-to-Val discrimination during aminoacyl (aa)-AMP formation. Here, we show that the Gly56Ala variant lost its specificity in pre-transfer editing, confirming that this residue ensures the selectivity of all synthetic site reactions. Moreover, we found that the Gly56Ala mutation affects IleRS interaction with aa-tRNA likely by disturbing tRNA-dependent communication between the two active sites.


Assuntos
Escherichia coli , Isoleucina-tRNA Ligase , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Escherichia coli/genética , RNA de Transferência/genética , Valina , Domínio Catalítico , Isoleucina , Especificidade por Substrato , Sítios de Ligação
4.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888694

RESUMO

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Isoleucina-tRNA Ligase/metabolismo , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos
5.
J Phys Chem B ; 126(3): 620-633, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35015537

RESUMO

The development of new antimicrobial drugs is critically needed due to the alarming increase in antibiotic resistance in bacterial pathogens. The active sites of different bacterial aminoacyl tRNA synthetases (aaRS) are validated targets of antibiotics. At present, the only aaRS inhibitor approved is mupirocin (MRC) which targets bacterial isoleucyl tRNA synthetase (IleRS). The present work is aimed at understanding the lacunae of knowledge concerning the active site conformational dynamics in IleRS in the presence of inhibitor mupirocin. With this end in view, we have carried out classical molecular dynamics simulation and metadynamics simulations of the open state of IleRS from Staphylococcus aureus (SaIleRS), the closed state tripartite complex bound with cognate adenylate (Ile-AMP) and tRNA, the closed state tripartite complex bound with noncognate MRC, and the closed state tripartite complex bound with tRNA and MRC with mutated SaIleRS (V588F). The present simulation established a dynamic picture of SaIleRS complexed with cognate and the noncognate substrates which are completely consistent with crystallographic and biochemical studies and explain the existing lacunae of knowledge. The active site is significantly more compact in the Ile-AMP bound complex compared to the open state due to the closure of the KMSKS and HMGH loops and clamping down of the tRNA acceptor end near the active site gate. The present result shows that the unusual open conformational state of the KMSKS loop observed in the cognate substrate-bound complex in the crystal is due to crystallographic constraints. Although the mupirocin tightly fits the catalytic active site in the MRC-bound complex, the nonanoic acid moiety is partly exposed to the water. The KMSKS loop is pushed open in the MRC-bound complex to accommodate the noncognate MRC. New tunnels open up, extending to the editing site in the complex. Out of its three broad segments, the C12 to C17 segment, the conjugated segment, and the nonanoic moiety, the conjugated part of MRC binds most effectively with the active site of the MRC-bound complex. The aromatic residues packing around the C12 to C17 segment of MRC stabilize the tRNA hairpin conformation in a similar way as observed in the TrpRS. The V588F mutation is weakening the interaction between this region of the active site and weakens the binding of MRC in the active site. This result explains why the V588F mutation is responsible for low-level mupirocin resistance. The free energy of unbinding the conjugated segment (and C12 to C17 segment, as well) largely contributes to the total free energy of unbinding the MRC. The active site organization of IleRS from eukaryotic Candida albicans is compared with the bacterial IleRS active site to understand the low binding affinity in eukaryotic IleRS. The present study could be a starting point of future studies related to the development of effective drug binding in the SaIleRS.


Assuntos
Isoleucina-tRNA Ligase , Mupirocina , Domínio Catalítico , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/metabolismo , Mupirocina/química , Mupirocina/farmacologia , Staphylococcus aureus/metabolismo
6.
J Am Chem Soc ; 143(31): 12003-12013, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342433

RESUMO

Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar Ki and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/análogos & derivados , Antibacterianos/química , Inibidores Enzimáticos/química , Isoleucina-tRNA Ligase/antagonistas & inibidores , Isoleucina-tRNA Ligase/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mupirocina/química , Mupirocina/farmacologia
7.
J Autoimmun ; 122: 102680, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120070

RESUMO

OBJECTIVE: Anti-aminoacyl-tRNA synthetase (anti-ARS) antibodies are useful for identifying a clinical subset of patients with idiopathic inflammatory myopathies (IIMs). Anti-OJ antibodies, which recognize multi-enzyme synthetase complexes including isoleucyl-tRNA synthetase (IARS) and lysyl-tRNA synthetase (KARS), are among the anti-ARS antibodies. Although testing antibodies to other ARSs have been used clinically, no validated immunoassays for detecting anti-OJ antibodies are available. We aimed to establish an anti-OJ ELISA. METHODS: Serum samples were collected from 279 patients with IIMs and 22 patients with idiopathic interstitial pneumonia. Sixty-four of the samples that had been confirmed to be negative for anti-OJ by standard immunoprecipitation were used as the negative control, and 12 anti-OJ-positive reference sera were used as the positive control. Antibodies to IARS and KARS were assayed by ELISA using biotinylated recombinant proteins generated by in vitro transcription/translation. RESULTS: The anti-OJ-positive sera strongly reacted with the KARS and IARS recombinant proteins in ELISA. Although all 12 reference sera were positive in the anti-KARS ELISA, 4 of the 64 anti-OJ-negative sera were also weakly positive. The sensitivity and the specificity were 100% and 93.8%, respectively. Since our anti-KARS ELISA performed well, showing a high agreement with the results for immunoprecipitation (Cohen's κ > 0.8), the remaining 237 samples were also tested. Thirteen anti-KARS-positive sera were newly found by ELISA, all of which were anti-OJ positive by immunoprecipitation. CONCLUSION: Immunoassays for detecting anti-OJ antibodies using KARS and IARS recombinant proteins were developed. Our ELISAs performed well, with very high agreement of the results by immunoprecipitation and can be applied to the first reliable, easy-to-use measurement assays for anti-OJ antibodies.


Assuntos
Autoanticorpos/isolamento & purificação , Isoleucina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/metabolismo , Miosite/diagnóstico , Adulto , Idoso , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Isoleucina-tRNA Ligase/imunologia , Lisina-tRNA Ligase/imunologia , Masculino , Pessoa de Meia-Idade , Miosite/sangue , Miosite/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
8.
Biosens Bioelectron ; 172: 112783, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157411

RESUMO

Whole-cell amino acid biosensors can sense the concentrations of certain amino acids and output easily detectable signals, which are important for construction of microbial producers. However, many reported biosensors have poor specificity because they also sense non-target amino acids. Besides, biosensors for many amino acids are still unavailable. In this study, we proposed a new strategy for constructing whole-cell biosensors based on aminoacyl-tRNA synthetases (aaRSs), which take the advantage of their universality and intrinsically specific binding ability to corresponding amino acids. Taking isoleucine biosensor as an example, we first mutated the isoleucyl-tRNA synthetase in Escherichia coli to dramatically decrease its affinity to isoleucine. The engineered cells specifically sensed isoleucine and output isoleucine dose-dependent cell growth as an easily detectable signal. To further expand the sensing range, an isoleucine exporter was overexpressed to enhance excretion of intracellular isoleucine. Since cells equipped with the optimized whole-cell biosensor showed accelerated growth when cells produced higher concentrations of isoleucine, the biosensor was successfully applied in high-throughput selection of isoleucine overproducers from random mutation libraries. This work demonstrates the feasibility of engineering aaRSs to construct a new kind of whole-cell biosensors for amino acids. Considering all twenty proteinogenic and many non-canonical amino acids have their specific aaRSs, this strategy should be useful for developing biosensors for various amino acids.


Assuntos
Aminoacil-tRNA Sintetases , Técnicas Biossensoriais , Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Isoleucina/genética , Isoleucina-tRNA Ligase/metabolismo , Cinética
9.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631562

RESUMO

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoleucina-tRNA Ligase/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia , Triazóis/farmacologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Candida/efeitos dos fármacos , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Escherichia coli/efeitos dos fármacos , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/metabolismo , Thermus thermophilus/enzimologia , Triazóis/síntese química , Triazóis/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo
10.
FEBS J ; 287(4): 800-813, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31486189

RESUMO

Isoleucyl-tRNA synthetase (IleRS) is a paradigm for understanding how specificity against smaller hydrophobic substrates evolved in both the synthetic and editing reactions. IleRS misactivates nonproteinogenic norvaline (Nva) and proteinogenic valine (Val), with a 200-fold lower efficiency than the cognate isoleucine (Ile). Translational errors are, however, prevented by IleRS hydrolytic editing. Nva and Val are both smaller than Ile by a single methylene group. How does the removal of one additional methylene group affects IleRS specificity? We found that the nonproteinogenic α-aminobutyrate (Abu) is activated 30-fold less efficiently than Nva and Val, indicating that the removal of the second methylene group comes with a lower penalty. As with Nva and Val, discrimination against Abu predominantly originated from a higher KM . To examine whether increased hydrophobicity could compensate for the loss of van der Waals interactions, we tested fluorinated Abu analogues. We found that fluorination further hampered activation by IleRS, and even more so by the evolutionary-related ValRS. This suggests that hydrophobicity is not a main driving force of substrate binding in these enzymes. Finally, a discrimination factor of 7100 suggests that IleRS is not expected to edit Abu. However, we found that the IleRS editing domain hydrolyzes Abu-tRNAIle with a rate of 40 s-1 and the introduction of fluorine did not slow down the hydrolysis. This raises interesting questions regarding the mechanism of specificity of the editing domain and its evolution. Understanding what shapes IleRS specificity is also of importance for reengineering translation to accommodate artificial substrates including fluorinated amino acids. ENZYMES: Isoleucyl-tRNA synthetase (EC 6.1.1.5), leucyl-tRNA synthetase (EC 6.1.1.4), valyl-tRNA synthetase (EC 6.1.1.9).


Assuntos
Aminobutiratos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Isoleucina-tRNA Ligase/química , Leucina-tRNA Ligase/química , Valina-tRNA Ligase/química , Aminobutiratos/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Halogenação , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/metabolismo , Cinética , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Valina-tRNA Ligase/genética , Valina-tRNA Ligase/metabolismo
11.
Assay Drug Dev Technol ; 17(7): 298-309, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634019

RESUMO

Multidrug resistance (MDR) is a major health issue for the treatment of infectious diseases throughout the world. Staphylococcus aureus (S. aureus) is a Gram-positive bacteria, responsible for various local and systemic infections in humans. The continuous and abrupt use of antibiotics against bacteria such as S. aureus results in the development of resistant strains. Presently, mupirocin (MUP) is the drug of choice against S. aureus and MDR (methicillin-resistant). However, S. aureus has acquired resistance against MUP as well due to isoleucyl-tRNA synthetase (IleS) mutation at sites 588 and 631. Thus, the aim of the present study was to discover novel bioactives against MUP-resistant S. aureus using in silico drug repurposing approaches. In silico drug repurposing techniques were used to obtain suitable bioactive lead molecules such as buclizine, tasosartan, emetine, medrysone, and so on. These lead molecules might be able to resolve this issue. These leads were obtained through molecular docking simulation based virtual screening, which could be promising for the treatment of MUP-resistant S. aureus. The findings of the present work need to be validated further through in vitro and in vivo studies for their clinical application.


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antibacterianos/síntese química , Antibacterianos/química , Emetina/síntese química , Emetina/química , Emetina/farmacologia , Humanos , Isoleucina-tRNA Ligase/antagonistas & inibidores , Isoleucina-tRNA Ligase/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Pregnenodionas/síntese química , Pregnenodionas/química , Pregnenodionas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Tetrazóis/síntese química , Tetrazóis/química , Tetrazóis/farmacologia
12.
Sci Rep ; 9(1): 9187, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235750

RESUMO

Candida albicans biofilm formation is governed by a regulatory circuit comprising nine transcription factors which control a network of target genes. However, there are still unknown genes contributing to biofilm features. Thus, the GRACE library was screened to identify genes involved in mature biofilm development. Twenty-nine conditional mutants were selected for a second screening revealing three groups of genes: twenty- two conditional mutants were defective for normal growth and unable to form biofilms; six strains, conditionally defective in genes ARC40, ARC35, ORF19.2438, SKP1, ERG6, and ADE5,7 that are likely essential or involved in general cell processes, grew normally as free-floating cells but produced less biofilm; finally, the conditional strain for a putative essential isoleucyl- tRNA synthetase gene, ILS1, was unable to grow as yeast-phase cells but was capable of producing a tridimensional biofilm structure in spite of reduced metabolic activity. This unique biofilm still relied on the classical biofilm genes, while it differentially induced groups of genes involved in adhesion, protein synthesis, cell wall organization, and protein folding. Although the conditional mutant repressed genes annotated for morphology and homeostasis processes affecting morphology and metabolism, the dynamic cell growth enabled the formation of a complex biofilm community independent of ILS1.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Isoleucina-tRNA Ligase/metabolismo , Proteínas Fúngicas/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Isoleucina-tRNA Ligase/genética , Mutação
13.
Life Sci ; 224: 51-57, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905780

RESUMO

The pathogenesis of abdominal aortic aneurysm remains unclear. The aim of the present study was to establish whether isoleucyl-tRNA synthetase (Iars) regulates the differentiation and apoptosis of vascular smooth muscle cells (VSMCs) during the development of abdominal aortic aneurysm (AAA). In addition, the contribution of various signaling pathways towards this process was ascertained. The study demonstrated that the expression of Iars, p-p38, osteopontin (OPN) and Bcl-2-associated X protein (Bax) clearly increased, while levels of p-PI3K and smooth muscle 22 alpha (SM22α) decreased significantly in AAA tissues. Inhibition of Iars significantly reduced the incidence of angiotensin II (AngII)-induced AAA in mice, coincident with decreased activity of the p38 MAPK pathway and increased PI3K pathway activity. AngII-induced phenotypic switching and apoptosis of VSMCs decreased following the inhibition of Iars in vitro. Upregulation of the IARS gene induced phenotypic switching and apoptosis in VSMCs in addition to increased p38 MAPK pathway activation and reduced PI3K pathway activation. Following pretreatment with an activator of the PI3K pathway, expression of Iars and the phenotypic markers of VSMCs were not affected, while apoptosis of VSMCs decreased. Similarly, inhibition of the p38 MAPK pathway in VSMCs did not affect the expression of Iars or the degree of cell apoptosis, but reduced phenotypic switching was observed. Conclusively, upregulation of Iars regulates the phenotypic switching and apoptosis of VSMCs. Targeting Iars may be a promising strategy to prevent abdominal aortic aneurysm.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Apoptose , Regulação da Expressão Gênica , Isoleucina-tRNA Ligase/metabolismo , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Transdução de Sinais
14.
Genome Biol ; 19(1): 94, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021593

RESUMO

BACKGROUND: Fitness costs imposed on bacteria by antibiotic resistance mechanisms are believed to hamper their dissemination. The scale of these costs is highly variable. Some, including resistance of Staphylococcus aureus to the clinically important antibiotic mupirocin, have been reported as being cost-free, which suggests that there are few barriers preventing their global spread. However, this is not supported by surveillance data in healthy communities, which indicate that this resistance mechanism is relatively unsuccessful. RESULTS: Epistasis analysis on two collections of MRSA provides an explanation for this discord, where the mupirocin resistance-conferring mutation of the ileS gene appears to affect the levels of toxins produced by S. aureus when combined with specific polymorphisms at other loci. Proteomic analysis demonstrates that the activity of the secretory apparatus of the PSM family of toxins is affected by mupirocin resistance. As an energetically costly activity, this reduction in toxicity masks the fitness costs associated with this resistance mutation, a cost that becomes apparent when toxin production becomes necessary. This hidden fitness cost provides a likely explanation for why this mupirocin-resistance mechanism is not more prevalent, given the widespread use of this antibiotic. CONCLUSIONS: With dwindling pools of antibiotics available for use, information on the fitness consequences of the acquisition of resistance may need to be considered when designing antibiotic prescribing policies. However, this study suggests there are levels of depth that we do not understand, and that holistic, surveillance and functional genomics approaches are required to gain this crucial information.


Assuntos
Antibacterianos/farmacologia , Epistasia Genética , Aptidão Genética/efeitos dos fármacos , Genoma Bacteriano , Isoleucina-tRNA Ligase/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana , Evolução Molecular , Loci Gênicos , Isoleucina-tRNA Ligase/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Proteômica/métodos
15.
Proc Natl Acad Sci U S A ; 115(15): 3894-3899, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581302

RESUMO

T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNAIle ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNAIle and the other between the Stem IIA/B pseudoknot and the D loop of tRNAIle These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.


Assuntos
Isoleucina-tRNA Ligase/genética , Mycobacterium smegmatis/genética , RNA Bacteriano/química , RNA de Transferência/química , Elementos Reguladores de Transcrição , Riboswitch , Regulação Bacteriana da Expressão Gênica , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
16.
RNA Biol ; 15(4-5): 667-677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29345185

RESUMO

Inhibition of tRNA aminoacylation has proven to be an effective antimicrobial strategy, impeding an essential step of protein synthesis. Mupirocin, the well-known selective inhibitor of bacterial isoleucyl-tRNA synthetase, is one of three aminoacylation inhibitors now approved for human or animal use. However, design of novel aminoacylation inhibitors is complicated by the steadfast requirement to avoid off-target inhibition of protein synthesis in human cells. Here we review available data regarding known aminoacylation inhibitors as well as key amino-acid residues in aminoacyl-tRNA synthetases (aaRSs) and nucleotides in tRNA that determine the specificity and strength of the aaRS-tRNA interaction. Unlike most ligand-protein interactions, the aaRS-tRNA recognition interaction represents coevolution of both the tRNA and aaRS structures to conserve the specificity of aminoacylation. This property means that many determinants of tRNA recognition in pathogens have diverged from those of humans-a phenomenon that provides a valuable source of data for antimicrobial drug development.


Assuntos
Antibacterianos/farmacologia , Isoleucina-tRNA Ligase/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA de Transferência de Leucina/genética , Aminoacilação de RNA de Transferência/efeitos dos fármacos , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Humanos , Isoleucina-tRNA Ligase/antagonistas & inibidores , Isoleucina-tRNA Ligase/metabolismo , Mupirocina/química , Mupirocina/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Inibidores da Síntese de Proteínas/química , Quinazolinonas/química , Quinazolinonas/farmacologia , RNA de Transferência de Leucina/antagonistas & inibidores , RNA de Transferência de Leucina/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacilação de RNA de Transferência/genética
17.
Sci Rep ; 7: 41763, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139725

RESUMO

Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote distinct phenotypes in response to starvation, the ileS(T233P) strain was observed to exhibit a significant defect in formation of environmentally resistant spores. The sporulation defect ranged from 3-fold to 30-fold and was due to a delay in activation of early sporulation genes. The loss of aminoacylation quality control in the ileS(T233P) strain resulted in the inability to compete with a wild-type strain under selective conditions that required sporulation. These data show that the quality control function of IleRS is required in B. subtilis for efficient sporulation and suggests that editing by aminoacyl-tRNA synthetases may be important for survival under starvation/nutrient limitation conditions.


Assuntos
Bacillus subtilis/fisiologia , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/metabolismo , Esporos Bacterianos , Alelos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Mutação , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cell Physiol Biochem ; 40(6): 1646-1655, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006787

RESUMO

BACKGROUND/AIMS: Hirschsprung's disease (HSCR), known as aganglionosis, is an infrequent congenital gut motility disorder characterized by absence of enteric neurons. In this study, we focus on the role of the intronic miR-215 and its host gene isoleucyl-tRNA synthetase 2 (IARS2) in the pathogenesis of HSCR. METHODS: Quantitative real time PCR and Western blot were used to detect the miRNA, mRNAs, and proteins levels. The dual-luciferase reporter gene assay confirmed the direct regulation of the specific mRNA and miRNAs in cell lines. Transwell assays, CCK8 assay, and flow cytometry were used to measure cell function of the human 293T and SH-SY5Y cells. RESULTS: Expression levels of miR-215 in HSCR patient colon tissues were outstandingly lower than controls, which was positively correlated with expression of the host gene IARS2 and negatively correlated with predicted target gene: sialic acid binding Ig-like lectin 8 (SIGLEC-8). The loss of miR-215 inhibited cell migration and proliferation, which was consistent with the reduction of IARS2. The dual-luciferase reporter gene assay confirmed that miR-215 resulted in the inhibition of SIGLEC-8 by directly binding to the 3'-UTR of SIGLEC-8. Moreover, knocking-down SIGLEC-8 rescued the extent of suppressed cell migration and proliferation that resulted from the diminishment of miR-215. CONCLUSIONS: Our findings indicate that miR-215 acts in concert with the host gene IARS2 to affect neuron migration and proliferation through the target gene SIGLEC-8. We infer that the IARS2-miR-215-SIGLEC-8 pathway may play a crucial role in the pathogenesis of HSCR.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Lectinas/genética , MicroRNAs/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Pré-Escolar , Colo/metabolismo , Colo/patologia , Regulação para Baixo/genética , Feminino , Humanos , Isoleucina-tRNA Ligase/metabolismo , Lectinas/metabolismo , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Regulação para Cima/genética
19.
J Biol Chem ; 291(16): 8618-31, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921320

RESUMO

Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 10(3)-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability.


Assuntos
Isoleucina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Streptomyces griseus/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Teste de Complementação Genética , Isoleucina-tRNA Ligase/genética , RNA de Transferência/genética , Streptomyces griseus/genética
20.
J Biol Chem ; 289(47): 32446-58, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25258320

RESUMO

Numerous cytochrome P450s are involved in secondary metabolite biosynthesis. The biosynthetic gene cluster for reveromycin A (RM-A), which is a promising lead compound with anti-osteoclastic activity, also includes a P450 gene, revI. To understand the roles of P450revI, we comprehensively characterized the enzyme by genetic, kinetic, and structural studies. The revI gene disruptants (ΔrevI) resulted in accumulation of reveromycin T (RM-T), and revI gene complementation restored RM-A production, indicating that the physiological substrate of P450revI is RM-T. Indeed, the purified P450revI catalyzed the C18-hydroxylation of RM-T more efficiently than the other RM derivatives tested. Moreover, the 1.4 Å resolution co-crystal structure of P450revI with RM-T revealed that the substrate binds the enzyme with a folded compact conformation for C18-hydroxylation. To address the structure-enzyme activity relationship, site-directed mutagenesis was performed in P450revI. R190A and R81A mutations, which abolished salt bridge formation with C1 and C24 carboxyl groups of RM-T, respectively, resulted in significant loss of enzyme activity. The interaction between Arg(190) and the C1 carboxyl group of RM-T elucidated why P450revI was unable to catalyze both RM-T 1-methyl ester and RM-T 1-ethyl ester. Moreover, the accumulation of RM-T in ΔrevI mutants enabled us to characterize its biological activity. Our results show that RM-T had stronger anticancer activity and isoleucyl-tRNA synthetase inhibition than RM-A. However, RM-T showed much less anti-osteoclastic activity than RM-A, indicating that hemisuccinate moiety is important for the activity. Structure-based P450revI engineering for novel hydroxylation and subsequent hemisuccinylation will help facilitate the development of RM derivatives with anti-osteoclast activity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Piranos/metabolismo , Compostos de Espiro/metabolismo , Animais , Biocatálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Hidroxilação , Isoleucina-tRNA Ligase/antagonistas & inibidores , Isoleucina-tRNA Ligase/metabolismo , Células K562 , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Mutação , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Ligação Proteica , Estrutura Terciária de Proteína , Piranos/química , Piranos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA