Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomolecules ; 11(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926076

RESUMO

Multiple crystal structures of the homo-trimeric protein disulphide isomerase PmScsC reveal that the peptide which links the trimerization stalk and catalytic domain can adopt helical, ß-strand and loop conformations. This region has been called a 'shape-shifter' peptide. Characterisation of this peptide using NMR experiments and MD simulations has shown that it is essentially disordered in solution. Analysis of the PmScsC crystal structures identifies the role of intermolecular contacts, within an assembly of protein molecules, in stabilising the different linker peptide conformations. These context-dependent conformational properties may be important functionally, allowing for the binding and disulphide shuffling of a variety of protein substrates to PmScsC. They also have a relevance for our understanding of protein aggregation and misfolding showing how intermolecular quaternary interactions can lead to ß-sheet formation by a sequence that in other contexts adopts a helical structure. This 'shape-shifting' peptide region within PmScsC is reminiscent of one-to-many molecular recognition features (MoRFs) found in intrinsically disordered proteins which are able to adopt different conformations when they fold upon binding to their protein partners.


Assuntos
Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos , Proteus mirabilis/enzimologia , Proteus mirabilis/metabolismo
2.
Antioxid Redox Signal ; 35(1): 21-39, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607928

RESUMO

Aims: Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential. Conventionally, Dsb proteins have specific redox functions with monomeric and dimeric Dsbs exclusively catalyzing thiol oxidation and disulfide isomerization, respectively. This contrasts with the eukaryotic disulfide forming machinery where the modular TRX protein disulfide isomerase (PDI) mediates thiol oxidation and disulfide reshuffling. In this study, we identified and structurally and biochemically characterized a novel Dsb-like protein from Salmonella enterica termed bovine colonization factor protein H (BcfH) and defined its role in virulence. Results: In the conserved bovine colonization factor (bcf) fimbrial operon, the Dsb-like enzyme BcfH forms a trimeric structure, exceptionally uncommon among the large and evolutionary conserved TRX superfamily. This protein also displays very unusual catalytic redox centers, including an unwound α-helix holding the redox active site and a trans-proline instead of the conserved cis-proline active site loop. Remarkably, BcfH displays both thiol oxidase and disulfide isomerase activities contributing to Salmonella fimbrial biogenesis. Innovation and Conclusion: Typically, oligomerization of bacterial Dsb proteins modulates their redox function, with monomeric and dimeric Dsbs mediating thiol oxidation and disulfide isomerization, respectively. This study demonstrates a further structural and functional malleability in the TRX-fold protein family. BcfH trimeric architecture and unconventional catalytic sites permit multiple redox functions emulating in bacteria the eukaryotic PDI dual oxidoreductase activity. Antioxid. Redox Signal. 35, 21-39.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Salmonella enterica/patogenicidade , Proteínas de Bactérias/ultraestrutura , Óperon/genética , Oxirredução , Estresse Oxidativo/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/ultraestrutura , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Dobramento de Proteína , Estrutura Terciária de Proteína , Salmonella enterica/enzimologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Tiorredoxinas/metabolismo
3.
Andrologia ; 52(3): e13530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026504

RESUMO

The protein disulphide isomerase A1 (PDIA1) is an important chaperone involved in protein quality control and redox regulation. Also, the ability of PDIA1 to bind to oestrogens suggests that it may play a role in epididymal maturation and male fertility. The goals of this study were to (a) verify the possible interaction between 17ß-estradiol and equine PDIA1 using bioinformatics; (b) identify and quantify PDIA1 protein in equine cauda epididymis throughout peripuberty; and (c) determine whether the amounts of PDIA1 in equine seminal plasma and spermatozoa are associated with fertility. Using in silico analysis, we were able to predict the tertiary structure of equine PDIA1 and to demonstrate the interaction between 17ß-estradiol and the putative binding site in domains b and b'. Colts under 24 months of age had lower relative amounts of PDIA1 in cauda epididymal fluid in comparison with older males (p < .01). No difference was observed in seminal plasma PDIA1 between fertile and subfertile stallions. Our study demonstrates that PDIA1 expression in the epididymis increases during peripuberty. However, in the adult stallion, its quantity in seminal plasma is not associated with fertility.


Assuntos
Epididimo/metabolismo , Cavalos/fisiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Sêmen/metabolismo , Maturidade Sexual/fisiologia , Animais , Biologia Computacional , Epididimo/química , Estradiol/química , Estradiol/metabolismo , Fertilidade , Masculino , Simulação de Acoplamento Molecular , Isomerases de Dissulfetos de Proteínas/análise , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Estrutura Terciária de Proteína , Sêmen/química
4.
Biochem Biophys Res Commun ; 495(1): 1041-1047, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162449

RESUMO

Protein disulfide isomerases (PDIs) can catalyze disulfide bond formation in nascent secretory proteins and membrane proteins and can introduce correct disulfide bonds into substrate proteins containing mispaired disulfides. The functions of mammalian PDIs have been extensively studied; however, relative to mammalian PDIs, the systematic characterization of PDIs for their oxidoreductase activity in plants is still lacking. Arabidopsis protein disulfide isomerases-11 (AtPDI11), with the structure of a-a'-D, has no ortholog in animals or yeast. In this study, we demonstrated that AtPDI11 has oxidoreductase activity in vitro using a GSSG/GSH-mediated oxidative protein folding system. Moreover, the active site in the a' domain of AtPDI11 is critical for its oxidative folding activity. AtPDI11 is present in four redox forms in vivo, which are determined by the active site cysteines (Cys52 and Cys55 in the a domain, and Cys171 and Cys174 in the a' domain). Genetic evidence suggests that AtPDI11 is required for plant growth under reducing conditions. Our work provides an example for studying the oxidoreductase function of other plant PDIs.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Arabidopsis/genética , Sítios de Ligação , Ativação Enzimática , Oxirredução , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade
5.
Nature ; 551(7681): 525-528, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29107940

RESUMO

The peptide-loading complex (PLC) is a transient, multisubunit membrane complex in the endoplasmic reticulum that is essential for establishing a hierarchical immune response. The PLC coordinates peptide translocation into the endoplasmic reticulum with loading and editing of major histocompatibility complex class I (MHC-I) molecules. After final proofreading in the PLC, stable peptide-MHC-I complexes are released to the cell surface to evoke a T-cell response against infected or malignant cells. Sampling of different MHC-I allomorphs requires the precise coordination of seven different subunits in a single macromolecular assembly, including the transporter associated with antigen processing (TAP1 and TAP2, jointly referred to as TAP), the oxidoreductase ERp57, the MHC-I heterodimer, and the chaperones tapasin and calreticulin. The molecular organization of and mechanistic events that take place in the PLC are unknown owing to the heterogeneous composition and intrinsically dynamic nature of the complex. Here, we isolate human PLC from Burkitt's lymphoma cells using an engineered viral inhibitor as bait and determine the structure of native PLC by electron cryo-microscopy. Two endoplasmic reticulum-resident editing modules composed of tapasin, calreticulin, ERp57, and MHC-I are centred around TAP in a pseudo-symmetric orientation. A multivalent chaperone network within and across the editing modules establishes the proofreading function at two lateral binding platforms for MHC-I molecules. The lectin-like domain of calreticulin senses the MHC-I glycan, whereas the P domain reaches over the MHC-I peptide-binding pocket towards ERp57. This arrangement allows tapasin to facilitate peptide editing by clamping MHC-I. The translocation pathway of TAP opens out into a large endoplasmic reticulum lumenal cavity, confined by the membrane entry points of tapasin and MHC-I. Two lateral windows channel the antigenic peptides to MHC-I. Structures of PLC captured at distinct assembly states provide mechanistic insight into the recruitment and release of MHC-I. Our work defines the molecular symbiosis of an ABC transporter and an endoplasmic reticulum chaperone network in MHC-I assembly and provides insight into the onset of the adaptive immune response.


Assuntos
Apresentação de Antígeno , Microscopia Crioeletrônica , Antígenos de Histocompatibilidade Classe I/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/química , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Sítios de Ligação , Linfoma de Burkitt/química , Calreticulina/química , Calreticulina/metabolismo , Calreticulina/ultraestrutura , Citosol/imunologia , Citosol/metabolismo , Progressão da Doença , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Domínios Proteicos
6.
Sci Rep ; 3: 2456, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23949117

RESUMO

The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of interaction between Prx4 and P5 thioredoxin domain. Detailed analyses of oxidative folding catalyzed by the reconstituted Prx4-PDIs pathways demonstrated that, while P5 and ERp46 are dedicated to rapid, but promiscuous, disulfide introduction, PDI is an efficient proofreader of non-native disulfides. Remarkably, the Prx4-dependent formation of native disulfide bonds was accelerated when PDI was combined with ERp46 or P5, suggesting that PDIs work synergistically to increase the rate and fidelity of oxidative protein folding. Thus, the mammalian ER seems to contain highly systematized oxidative networks for the efficient production of large quantities of secretory proteins.


Assuntos
Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Oxirredução , Peroxirredoxinas/ultraestrutura , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Dobramento de Proteína
7.
Biopolymers ; 92(1): 35-43, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18985675

RESUMO

We recently isolated a protein disulfide isomerase (PDI) from the Rubiaceae (coffee family) plant Oldenlandia affinis (OaPDI) and demonstrated that it facilitates the production of disulfide-knotted defense proteins called cyclotides. PDIs are major folding catalysts in the eukaryotic ER where they are responsible for formation, breakage, or shuffling of disulfide bonds in substrate polypeptides and are important chaperones in the secretory pathway. Here, we report the first detailed analysis of the oligomerization behavior of a plant PDI, based on characterization of OaPDI using various biochemical and biophysical techniques, including size-exclusion chromatography, NMR spectroscopy, surface plasmon resonance and atomic force microscopy. In solution at low concentration OaPDI comprises mainly monomers, but fractions of dimers and/or higher-order oligomers were observed at increased conditions, raising the possibility that dimerization and/or oligomerization could be a mechanism to adapt to the various-sized polypeptide substrates of PDI. Unlike mammalian PDIs, oligomerization of the plant PDI is not driven by the formation of intermolecular disulfide bonds, but by noncovalent interactions. The information derived in this study advances our understanding of the oligomerization behavior of OaPDI in particular but is potentially of broader interest for understanding the mechanism and role of oligomerization, and hence the catalytic and physiological mechanism, of the ubiquitous folding catalyst PDI.


Assuntos
Fenômenos Biofísicos , Oldenlandia/enzimologia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Modelos Moleculares , Peso Molecular , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Multimerização Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
8.
BMC Bioinformatics ; 9 Suppl 1: S15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18315846

RESUMO

BACKGROUND: Type I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes. The crystal structure of SPase in complex with signal peptide has not been solved and their substrate-binding site and binding specificities remain poorly understood. We report here a structure-based model for Escherichia coli DsbA 13-25 in complex with its endogenous type I SPase. RESULTS: The bound structure of DsbA 13-25 in complex with its endogenous type I SPase reported here reveals the existence of an extended conformation of the precursor protein with a pronounced backbone twist between positions P3 and P1'. Residues 13-25 of DsbA occupy, and thereby define 13 subsites, S7 to S6', within the SPase substrate-binding site. The newly defined subsites, S1' to S6' play critical roles in the substrate specificities of E. coli SPase. Our results are in accord with available experimental data. CONCLUSION: Collectively, the results of this study provide interesting new insights into the binding conformation of signal peptides and the substrate-binding site of E. coli SPase. This is the first report on the modeling of a precursor protein into the entire SPase binding site. Together with the conserved precursor protein binding conformation, the existing and newly identified substrate binding sites readily explain SPase cleavage fidelity, consistent with existing biochemical results and solution structures of inhibitors in complex with E. coli SPase. Our data suggests that both signal and mature moiety sequences play important roles and should be considered in the development of predictive tools.


Assuntos
Algoritmos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Modelos Químicos , Modelos Moleculares , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA