Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Med Sci Monit ; 28: e934914, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279667

RESUMO

BACKGROUND Curcumol is a hydrogenated austenitic compound with hemiketal. In this study we evaluated the effects of curcumol on local inflammatory response, cell proliferation, and metastasis in endometriosis, and elucidated the underlying mechanisms. MATERIAL AND METHODS Ectopic endometrial stromal cells were treated with increasing doses of curcumol. The MTT assay was used to assess cell viability. FITC-labeled annexin-V/PI double-staining method and flow cytometry were used to determine cell apoptosis. Cell migration was evaluated using a wound healing assay. ELISA kits were used to detect the levels of TNF-alpha, IL-6, and IL-1ß. Western blot assay was used to examine the phosphorylation degree of JAK2 and STAT3 and the expression of Bax, Bcl2, and caspase-3 proteins. Autologous endometrial transplantation was used to establish a rat model to assess the anti-EMS effect of curcumol in vivo. RESULTS Curcumol can inhibit the proliferation of ectopic endometrial stromal cells, promote cell apoptosis, and weaken cell migration ability. Curcumol can reduce the expression of Bax and caspase-3 protein and increase the expression of Bcl2 protein. Curcumol also can inhibit the secretion of inflammatory cytokines, including tumor necrosis cytokines (TNF)-alpha, interleukin (IL)-6, and IL-1ß, by ectopic endometrial stromal cells. In addition, curcumol can also inhibit the phosphorylation of JAK2 and STAT3. In vivo experiments also proved that curcumol could inhibit the growth of ectopic lesions in EMS model rats. CONCLUSIONS Curcumol can inhibit the JAK2/STAT3 pathway, reduce the inflammatory cytokines secreted by ectopic endometrial stromal cells, inhibit cell proliferation and migration, and reduce the volume of ectopic lesions.


Assuntos
Apoptose , DNA/genética , Endometriose/genética , Janus Quinase 2/genética , Fator de Transcrição STAT3/genética , Sesquiterpenos/farmacologia , Útero/metabolismo , Adulto , Proliferação de Células , Sobrevivência Celular , Medicamentos de Ervas Chinesas/farmacologia , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Feminino , Humanos , Janus Quinase 2/biossíntese , Estudos Retrospectivos , Fator de Transcrição STAT3/biossíntese , Transdução de Sinais , Útero/patologia , Adulto Jovem
2.
Int Immunopharmacol ; 99: 107974, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34358862

RESUMO

Gestational diabetes mellitus (GDM) is a common complication of pregnancy characterized by intrauterine hyperglycemia, which is often associated with a high risk of obesity and diabetes in the offspring. In this study, we established a GDM mouse model by intraperitoneal injection of streptozotocin to investigate the immuno-inflammatory responses in the liver of adult offspring. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were employed to evaluate the glucose tolerance status. Hematoxylin-eosin staining was used to examine the histological changes in the liver. Quantitative real-timePCR (qRT-PCR) was applied to examine the mRNA expression of immune factors. Western blot and immunofluorescence analyses were used to examine the expression of target protein. Additionally, cell experiments were performed to validate the in vivo results. Compared to the control group, the area of fat vacuoles and the number of lymphocyte cells were significantly higher in the 20 weeks-old offspring of GDM mice. The elevated mRNA level of the pro-inflammatory cytokines IL-1ß, IL-6, IL-33 and immune receptors CD3 and CD36 were found in the liver of F1-GDM. The protein level of IL-6r and the phosphorylation of JAK2 and STAT3 were significantly up-regulated. Moreover, the mRNA level of IL-6, IL-1ß and IL-33 and the phosphorylation of JAK2 and STAT3 were also up-regulated in the hepatocyte treated with high concentration of glucose. Our results suggest that intrauterine hyperglycemia is associated with increased inflammation in the liver of adult male offspring.


Assuntos
Diabetes Gestacional/patologia , Hepatite/patologia , Hiperglicemia/patologia , Fígado/patologia , Animais , Citocinas/análise , Citocinas/biossíntese , Diabetes Mellitus Experimental/patologia , Feminino , Intolerância à Glucose/complicações , Hepatite/congênito , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina , Interleucinas/biossíntese , Interleucinas/sangue , Janus Quinase 2/biossíntese , Janus Quinase 2/efeitos dos fármacos , Janus Quinase 2/genética , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Cultura Primária de Células , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Vacúolos/patologia
3.
Inflammopharmacology ; 29(4): 1101-1109, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218389

RESUMO

There are accumulating reports regarding poor response to common antidepressant therapy. Antidepressant resistance is often linked to inflammatory system activation and patients displaying inflammation prior to the treatment are less responsive to antidepressants. We hypothesized that the inefficacy of antidepressant therapy in some patients may be attributable to the drugs' inflammatory mode of action, which has been overlooked because of their substantial therapeutic benefit. Bupropion is a commonly prescribed antidepressant that is often used to treat seasonal affective disorders as well. Nevertheless, research suggests that bupropion causes inflammation and worsens depressive symptoms. Therefore, we investigated the impact of bupropion on cytokines of innate and adaptive immunity, as well as immune signaling pathways. We treated lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) with different doses of bupropion. Pro-/anti-inflammatory cytokines [tumor necrosis factor alpha (TNFα), interleukin-1ß (IL-1ß), IL-17, and IL-10] were assessed at both transcriptional and translational levels as well as the involvement of JAK2 /STAT3, TLR2, and TLR4 signaling in this process. Bupropion reduced IL-17A, TNFα, and IL-1ß protein levels in the cultures. Nonetheless, bupropion increased IL-1ß (P < 0.0001), TNFα (P < 0.0001), and IL-17A (P < 0.05) mRNA levels. Treatment enhanced both IL-10 concentration (P < 0.0001) and gene expression (P < 0.0001). TLR2 (P < 0.0001), TLR4 (P < 0.0001), JAK2 (P < 0.0001), and STAT3 (P < 0.0001) gene expression also rose in response to bupropion. The findings imply that bupropion, particularly 50 µM and 100 µM, has pro-inflammatory effects and should be co-administered with anti-inflammatory medications, at least in patients with inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Bupropiona/farmacologia , Janus Quinase 2/biossíntese , Fator de Transcrição STAT3/biossíntese , Receptor 2 Toll-Like/biossíntese , Receptor 4 Toll-Like/biossíntese , Adulto , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Fator de Transcrição STAT3/agonistas , Fator de Transcrição STAT3/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Adulto Jovem
4.
J Neuroinflammation ; 18(1): 150, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225736

RESUMO

BACKGROUND: Our recent studies have identified that the red nucleus (RN) dual-directionally modulates the development and maintenance of mononeuropathic pain through secreting proinflammatory and anti-inflammatory cytokines. Here, we further explored the action of red nucleus IL-33 in the early development of mononeuropathic pain. METHODS: In this study, male rats with spared nerve injury (SNI) were used as mononeuropathic pain model. Immunohistochemistry, Western blotting, and behavioral testing were used to assess the expressions, cellular distributions, and actions of red nucleus IL-33 and its related downstream signaling molecules. RESULTS: IL-33 and its receptor ST2 were constitutively expressed in the RN in naive rats. After SNI, both IL-33 and ST2 were upregulated significantly at 3 days and peaked at 1 week post-injury, especially in RN neurons, oligodendrocytes, and microglia. Blockade of red nucleus IL-33 with anti-IL-33 neutralizing antibody attenuated SNI-induced mononeuropathic pain, while intrarubral administration of exogenous IL-33 evoked mechanical hypersensitivity in naive rats. Red nucleus IL-33 generated an algesic effect in the early development of SNI-induced mononeuropathic pain through activating NF-κB, ERK, p38 MAPK, and JAK2/STAT3, suppression of NF-κB, ERK, p38 MAPK, and JAK2/STAT3 with corresponding inhibitors markedly attenuated SNI-induced mononeuropathic pain or IL-33-evoked mechanical hypersensitivity in naive rats. Red nucleus IL-33 contributed to SNI-induced mononeuropathic pain by stimulating TNF-α expression, which could be abolished by administration of inhibitors against ERK, p38 MAPK, and JAK2/STAT3, but not NF-κB. CONCLUSIONS: These results suggest that red nucleus IL-33 facilitates the early development of mononeuropathic pain through activating NF-κB, ERK, p38 MAPK, and JAK2/STAT3. IL-33 mediates algesic effect partly by inducing TNF-α through activating ERK, p38 MAPK and JAK2/STAT3.


Assuntos
Interleucina-33/biossíntese , Janus Quinase 2/biossíntese , Mononeuropatias/metabolismo , Neuralgia/metabolismo , Núcleo Rubro/metabolismo , Fator de Transcrição STAT3/biossíntese , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mononeuropatias/patologia , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley , Núcleo Rubro/patologia , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
5.
Drug Deliv ; 28(1): 1166-1178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34121564

RESUMO

CD123 targeting molecules have been widely applied in acute myelocytic leukemia (AML) therapeutics. Although antibodies have been more widely used as targeting molecules, aptamer have unique advantages for CD123 targeting therapy. In this study, we constructed an aptamer hydrogel termed as SSFH which could be precisely cut by Cas9/sgRNA for programmed SS30 release. To construct hydrogel, rolling-circle amplification (RCA) was used to generate hydrogel containing CD123 aptamer SS30 and sgRNA-targeting sequence. After incubation with Cas9/sgRNA, SSFH could lose its gel property and liberated the SS30 aptamer sequence, and released SS30 has been confirmed by gel electrophoresis. In addition, SS30 released from SSFH could inhibit cell proliferation and induce cell apoptosis in vitro. Moreover, SSFH could prolong survival rate and inhibit tumor growth via JAK2/STAT5 signaling pathway in vivo. Additionally, molecular imaging revealed SSFH co-injected with Cas9/sgRNA remained at the injection site longer than free aptamer. Furthermore, once the levels of cytokines were increasing, the complementary sequences of aptamers injection could neutralize SS30 and relieve side effect immediately. This study suggested that CD123 aptamer hydrogel SSFH and Cas9/sgRNA system has strong potential for CD123-positive AML anticancer therapy.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/farmacologia , Sistemas CRISPR-Cas , Hidrogéis/química , Subunidade alfa de Receptor de Interleucina-3/administração & dosagem , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Química Farmacêutica , Citocinas/efeitos dos fármacos , Portadores de Fármacos , Humanos , Janus Quinase 2/biossíntese , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Inflammation ; 44(1): 206-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32772240

RESUMO

Sjögren's syndrome (SS) is a chronic autoimmune disease targeting salivary and lacrimal glands. C-X-C motif chemokine ligand 10 (CXCL10) expression is upregulated in lip salivary glands (LSGs) of primary SS (pSS) patients, and CXCL10 involved in SS pathogenesis via immune-cell accumulation. Moreover, interferon (IFN)-γ enhances CXCL10 production via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. We investigated the effects of baricitinib, a selective JAK1/2 inhibitor, on both IFN-γ-induced CXCL10 production and immune-cell chemotaxis. We used immunohistochemical staining to determine the expression levels and localization of JAK1 and JAK2 in LSGs of SS patients (n = 12) and healthy controls (n = 3). We then evaluated the effect of baricitinib in an immortalized normal human salivary gland ductal (NS-SV-DC) cell line. Immunohistochemical analysis of LSGs from pSS patients revealed strong JAK1 and JAK2 expression in ductal and acinar cells, respectively. Baricitinib significantly inhibited IFN-γ-induced CXCL10 expression as well as the protein levels in an immortalized human salivary gland ductal-cell clone in a dose-dependent manner. Additionally, western blot analysis showed that baricitinib suppressed the IFN-γ-induced phosphorylation of STAT1 and STAT3, with a stronger effect observed in the case of STAT1. It also inhibited IFN-γ-mediated chemotaxis of Jurkat T cells. These results suggested that baricitinib suppressed IFN-γ-induced CXCL10 expression and attenuated immune-cell chemotaxis by inhibiting JAK/STAT signaling, suggesting its potential as a therapeutic strategy for pSS.


Assuntos
Azetidinas/farmacologia , Quimiocina CXCL10/antagonistas & inibidores , Interferon gama/farmacologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Purinas/farmacologia , Pirazóis/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Ductos Salivares/metabolismo , Sulfonamidas/farmacologia , Azetidinas/uso terapêutico , Linhagem Celular Transformada , Quimiocina CXCL10/biossíntese , Feminino , Humanos , Janus Quinase 1/biossíntese , Janus Quinase 2/biossíntese , Células Jurkat , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Fator de Transcrição STAT1/biossíntese , Ductos Salivares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/metabolismo , Sulfonamidas/uso terapêutico
7.
J Cutan Med Surg ; 25(2): 157-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33174479

RESUMO

BACKGROUND: The Janus kinase-signal transducer and activator of transcription signaling pathway has been suggested as a promising therapeutic target in vitiligo. However, limited data is available on the cutaneous expression of JAK in vitiligo. AIM: This study is designed to analyze the cutaneous expression patterns of JAK1, 2, and 3 in vitiligo and investigate their relation to the disease clinical parameters. METHODS: This case-control study recruited 24 patients having active vitiligo and 20 age, sex, and skin type-matched healthy volunteers. Skin biopsies were obtained from patients (lesional, perilesional and nonlesional) and controls for assessment of JAK1, 2, and 3 expression using RT-PCR. RESULTS: JAK1 and JAK3 were overexpressed in patients' skin compared to control skin and showed a stepwise pattern of upregulation from control to nonlesional, perilesional and lesional skin. However, JAK3 showed much stronger expression. In contrast JAK2 expression showed no significant difference in any of lesional, perilesional or nonlesional skin compared to control skin. JAK1 and JAK3 expression levels showed no correlation with neither the disease activity nor severity. CONCLUSION: JAK1 and more prominently JAK3 are upregulated in vitiliginous skin and possibly contribute to the pathogenesis of the disease. Accordingly, selective JAK3/1 inhibition may provide a favorable therapeutic opportunity for vitiligo patients.This study is registered on the ClinicalTrials.gov Identifier: NCT03185312.


Assuntos
Janus Quinase 1/biossíntese , Janus Quinase 2/biossíntese , Janus Quinase 3/biossíntese , Pele/metabolismo , Vitiligo/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Estudos Prospectivos , Vitiligo/diagnóstico , Adulto Jovem
8.
Can J Cardiol ; 35(11): 1546-1556, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31679624

RESUMO

BACKGROUND: Endothelial progenitor cell (EPC) therapy has been suggested as a major breakthrough in the treatment of ischemic diseases. However, the molecular mechanism that underlies EPC functional regulation is still unclear. METHODS: We examined the angiogenic capacity of EPCs in a hindlimb ischemia model of wild-type and ClC-3 knockout mice. RESULTS: Mice lacking of ClC-3 exhibited reduced blood flow recovery and neovascularization in ischemic muscles 7 and 14 days after hind limb ischemia. Moreover, compared with wild-type EPCs, the hindlimb blood reperfusion in mice receiving ClC-3 knockout EPCs was significantly impaired, accompanied by reduced EPC homing and retention. In vitro, EPCs derived from ClC-3 knockout mice displayed impaired migratory, adhesive, and angiogenic activity. CXC chemokine receptor 4 (CXCR4) expression was significantly reduced in EPC from ClC-3 knockout mice compared with wild-type. Moreover, the expression and phosphorylation of Janus kinase 2 (JAK-2), a downstream signalling of CXCR4, was also reduced in ClC-3 knockout EPC, indicating that CXCR4/JAK-2 signalling is dysregulated by ClC-3 deficiency. Consistent with this assumption, the migratory capacity of wild-type EPCs was attenuated by either CXCR4 antagonist AMD3100 or JAK-2 inhibitor AG490. More importantly, the impaired migratory capacity of ClC-3 knockout EPCs was rescued by overexpression of CXCR4. CONCLUSIONS: ClC-3 plays a critical role in the angiogenic capacity of EPCs and EPC-mediated neovascularization of ischemic tissues. Disturbance of CXCR4/JAK-2 signalling may contribute to the functional impairment of ClC-3 deficient EPCs. Thus, ClC-3 may be a potential therapeutic target for modulating neovascularization in ischemic diseases.


Assuntos
Canais de Cloreto/genética , Regulação da Expressão Gênica , Isquemia/metabolismo , Janus Quinase 2/genética , Neovascularização Patológica/metabolismo , Receptores CXCR4/genética , Transplante de Células-Tronco/métodos , Animais , Western Blotting , Células Cultivadas , Canais de Cloreto/biossíntese , Canais de Cloreto/deficiência , Modelos Animais de Doenças , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia/patologia , Isquemia/terapia , Janus Quinase 2/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Receptores CXCR4/biossíntese , Transdução de Sinais
9.
Eur Rev Med Pharmacol Sci ; 23(21): 9238-9250, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31773675

RESUMO

OBJECTIVE: We attempted to clarify the regulatory mechanism of UCA1/miR-331-3p/IL6R on cell progression in multiple myeloma (MM). PATIENTS AND METHODS: The expression of UCA1, miR-331-3p, and IL6R in tumor tissues and cells was measured by qRT-PCR. Cell Counting Kit-8 (CCK-8) was conducted to detect cell proliferation, and flow cytometry assay was applied to examine cell apoptosis. Protein expression of L6R, p-JAK2, p-STAT3, c-Myc, CyclinD1, Bcl-2, and Bax was detected by Western blot assay. The interaction among miR-331-3p, UCA1, and IL6R was determined by Luciferase reporter system. Murine xenograft assay was performed to confirm the biological function of UCA1 in vivo. RESULTS: The expression of UCA1 and IL6R was up-regulated, while miR-331-3p was down-regulated in MM tumors and cell lines compared with normal tissues and cells. By calculation, miR-331-3p was correlated with UCA1 or IL6R inversely. In addition, UCA1 knockdown suppressed cell proliferation and promoted apoptosis in vitro and in vivo. Luciferase reporter system confirmed the interaction between miR-331-3p and UCA1 or IL6R. More importantly, UCA1 restored miR-331-3p mediated inhibition of proliferation and promotion on apoptosis of MM cells. Consistently, IL6R rescued UCA1 knockdown caused repression on MM cell growth and elevation on apoptosis. Besides, UCA1 facilitated the activation of the JAK2/STAT3 signaling pathway by enhancing IL6R expression via targeting miR-331-3p. CONCLUSIONS: UCA1 accelerates proliferation and suppresses apoptosis in MM by targeting miR-331-3p/IL6R axis to activate JAK2/STAT3 pathway, providing potential targets for the diagnosis and therapy of MM.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Janus Quinase 2/biossíntese , MicroRNAs/biossíntese , Mieloma Múltiplo/fisiopatologia , RNA Longo não Codificante/fisiologia , Receptores de Interleucina-6/biossíntese , Fator de Transcrição STAT3/biossíntese , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Longo não Codificante/biossíntese , Transdução de Sinais/fisiologia , Transfecção , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/biossíntese
10.
Eur Rev Med Pharmacol Sci ; 23(21): 9286-9294, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31773696

RESUMO

OBJECTIVE: Cytokine signal transduction inhibitor 3 (SOCS3) negatively regulates Janus kinases (JAK) - signal transducer and activator of transcription (STAT) pathway. Bioinformatics analysis revealed a targeted relationship between miR-203 and SOCS3 mRNA. This study investigated the role of miR-203 in ovarian cancer cell proliferation and apoptosis. PATIENTS AND METHODS: Ovarian cancer tissues and adjacent tissues were collected to detect the expression of miR-203 and SOCS3. Ovarian cancer HO8910 cells were divided into miR-NC group, miR-203 inhibitor group, and miR-203 mimic group followed by the analysis of the expression of miR-203 and SOCS3 mRNA by quantitative Reverse Transcription-PCR (qRT-PCR), protein expression of p-JAK2 and p-STAT3 by Western blot, cell apoptosis by flow cytometry, and proliferation by 5-Ethynyl-2'-deoxyuridine (EdU) staining chronologically. RESULTS: Compared with adjacent tissues, miR-203 expression was significantly increased in tumor tissues and SCOS3 mRNA expression was decreased. Compared with those with lower miR-203 expression, the prognosis of patients with higher expression of miR-203 was significantly worse. There was a targeted regulatory relationship between miR-203 and SOCS3 mRNA. Compared with IOSE80 cells, miR-203 expression in HO8910 and SKOV3 cells was increased, and its expressions of SOCS3 mRNA and protein were decreased. Compared with miR-NC group, the transfection of miR-203 inhibitor significantly increased SOCS3 expression, and decreased the expression of p-JAK2 and p-STAT3 protein. We draw the conclusion that miR-203 increased cell apoptosis and decreased cell proliferation. However, opposite results were observed after the transfection of miR-203 mimic. CONCLUSIONS: Abnormal miR-203 and SOCS3 expression are related to the pathogenesis of ovarian cancer. MiR-203 affects the proliferation of JAK-STAT pathway and regulates the proliferation and apoptosis of ovarian cancer cells by targeting the inhibition of SOCS3 expression.


Assuntos
Apoptose/fisiologia , Carcinoma Epitelial do Ovário/fisiopatologia , Proliferação de Células/fisiologia , MicroRNAs/fisiologia , Neoplasias Ovarianas/fisiopatologia , Proteína 3 Supressora da Sinalização de Citocinas/fisiologia , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Janus Quinase 2/biossíntese , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Mimetismo Molecular/fisiologia , Neoplasias Ovarianas/metabolismo , Fator de Transcrição STAT3/biossíntese , Proteína 3 Supressora da Sinalização de Citocinas/biossíntese , Transfecção
11.
PLoS One ; 14(10): e0221635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600213

RESUMO

Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Janus Quinase 2 , Transtornos Mieloproliferativos , Transgenes , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia
13.
Mol Carcinog ; 58(8): 1512-1525, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31069881

RESUMO

Lung cancer is a leading cause of cancer-related death worldwide. Cyanopyridines and aminocyanopyridines with carbon-nitrogen bonds have been proved to exert significant anticancer, antibacterial, and anti-inflammatory effects. In this study, we showed that aminocyanopyridine 3o and 3k displaying potent antitumor activity via inhibiting the signal transducer and activator of transcription 3 (STAT3) pathway. They blocked the constitutive STAT3 phosphorylation in a dose- and time-dependent manner and regulated the transcription of STAT3 target genes encoding apoptosis factors. Most importantly, 3o also inhibited interleukin-6-induced STAT3 activation and nuclear localization. Furthermore, 3o significantly inhibited the tumor growth of H460-derived xenografts. Taken together, these findings suggest that 3o and 3k are promising therapeutic drug candidates for lung cancer by inhibiting persistent STAT3 signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Interleucina-6/metabolismo , Janus Quinase 2/biossíntese , Janus Quinase 3/biossíntese , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Acta Haematol ; 141(4): 261-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30965317

RESUMO

BCR-ABL1-negative myeloproliferative disorders and chronic myeloid leukaemia are haematologic malignancies characterised by single and mutually exclusive genetic alterations. Nevertheless, several patients co-expressing the JAK2V617F mutation and the BCR-ABL1 transcript have been described in the literature. We report the case of a 61-year-old male who presented with an essential thrombocythaemia phenotype and had a subsequent diagnosis of chronic phase chronic myeloid leukaemia. Colony-forming assays demonstrated the coexistence of 2 different haematopoietic clones: one was positive for the JAK2V617F mutation and the other co-expressed both JAK2V617F and the BCR-ABL1 fusion gene. No colonies displayed the BCR-ABL1 transcript alone. These findings indicate that the JAK2V617F mutation was the founding genetic alteration of the disease, followed by the acquisition of the BCR-ABL1 chimeric oncogene. Our data support the hypothesis that a heterozygous JAK2V617F clone may have favoured the bi-clonal nature of this myeloproliferative disorder, generating clones harbouring a second transforming genetic event.


Assuntos
Proteínas de Fusão bcr-abl , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Janus Quinase 2 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Mutação de Sentido Incorreto , Trombocitemia Essencial , Substituição de Aminoácidos , Ensaio de Unidades Formadoras de Colônias , Proteínas de Fusão bcr-abl/biossíntese , Proteínas de Fusão bcr-abl/genética , Humanos , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Trombocitemia Essencial/enzimologia , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia
15.
Haematologica ; 104(1): 70-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171023

RESUMO

Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.


Assuntos
Células Endoteliais/metabolismo , Janus Quinase 2/biossíntese , Selectina-P/biossíntese , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiureia/farmacologia , Janus Quinase 2/genética , Camundongos , Camundongos Transgênicos , Selectina-P/genética , Trombose/tratamento farmacológico , Trombose/genética , Trombose/patologia
16.
Eur Rev Med Pharmacol Sci ; 22(22): 7614-7620, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30536300

RESUMO

OBJECTIVE: The aim of this study was to explore the role of lncRNA ZNF667-AS1 in the recovery of spinal cord injury (SCI), and to investigate its underlying mechanism. MATERIALS AND METHODS: Mice were randomly assigned to the SCI group, the sham group and the lncRNA ZNF667-AS1 group, with 10 mice in each group. With Infinite Horizon device at a dose of 80 Kdyn, mice in the SCI group and the lncRNA ZNF667-AS1 group experienced SCI by an acute hit on the C5 spinous process. Before animal procedures, mice in the lncRNA ZNF667-AS1 group were additionally injected with overexpression lentivirus of lncRNA ZNF667-AS1. On the contrary, mice in the sham group only received laminectomy. After successful construction of the SCI model in mice, grip strength was accessed. LncRNA ZNF667-AS1 expression in spinal cord tissues before and after SCI was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR), respectively. Meanwhile, the protein expression levels of relative genes in Janus Kinase-signal transducer and activator of transcription (JAK-STAT) pathway were detected by Western blot. RESULTS: Grip strength of forelimb in the SCI group recovered significantly slower than that of the sham group. With the prolongation of SCI, the expression of lncRNA ZNF667-AS1 was gradually decreased. However, the expression levels of JAK2, STAT3 and iNOS were upregulated in a time-dependent manner. In addition, mice in the lncRNA ZNF667-AS1 group presented remarkable grip strength recovery of forelimb after SCI. CONCLUSIONS: LncRNA ZNF667-AS expression is gradually downregulated after SCI. Meanwhile, it inhibits the inflammatory response and promotes SCI recovery via suppressing the JAK-STAT pathway.


Assuntos
Inflamação/tratamento farmacológico , Janus Quinases/efeitos dos fármacos , RNA Longo não Codificante/uso terapêutico , Fatores de Transcrição STAT/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Feminino , Vetores Genéticos , Força da Mão , Inflamação/etiologia , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , RNA Longo não Codificante/genética , Recuperação de Função Fisiológica , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
17.
Arthritis Res Ther ; 20(1): 115, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880011

RESUMO

BACKGROUND: IL-17A has recently emerged as a potential target that regulates the extensive inflammation and abnormal bone formation observed in ankylosing spondylitis (AS). Blocking IL-17A is expected to inhibit bony ankylosis. Here, we investigated the effects of anti IL-17A agents in AS. METHODS: TNFα, IL-17A, and IL-12/23 p40 levels in serum and synovial fluid from patients with ankylosing spondylitis (AS), rheumatoid arthritis (RA), osteoarthritis (OA), or healthy controls (HC) were measured by ELISA. Bone tissue samples were obtained at surgery from the facet joints of ten patients with AS and ten control (Ct) patients with noninflammatory spinal disease. The functional relevance of IL-17A, biological blockades, Janus kinase 2 (JAK2), and non-receptor tyrosine kinase was assessed in vitro with primary bone-derived cells (BdCs) and serum from patients with AS. RESULTS: Basal levels of IL-17A and IL-12/23 p40 in body fluids were elevated in patients with AS. JAK2 was also highly expressed in bone tissue and primary BdCs from patients with AS. Furthermore, addition of exogenous IL-17A to primary Ct-BdCs promoted the osteogenic stimulus-induced increase in ALP activity and mineralization. Intriguingly, blocking IL-17A with serum from patients with AS attenuated ALP activity and mineralization in both Ct and AS-BdCs by inhibiting JAK2 phosphorylation and downregulating osteoblast-involved genes. Moreover, JAK2 inhibitors effectively reduced JAK2-driven ALP activity and JAK2-mediated events. CONCLUSIONS: Our findings indicate that IL-17A regulates osteoblast activity and differentiation via JAK2/STAT3 signaling. They shed light on AS pathogenesis and suggest new rational therapies for clinical AS ankylosis.


Assuntos
Diferenciação Celular/fisiologia , Interleucina-17/metabolismo , Janus Quinase 2/biossíntese , Osteoblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Espondilite Anquilosante/metabolismo , Adulto , Idoso , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interleucina-17/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Espondilite Anquilosante/tratamento farmacológico , Espondilite Anquilosante/patologia
18.
Biomed Res Int ; 2018: 3628121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29789785

RESUMO

Nonnutritive sweetener use is a common practice worldwide. Although considered safe for human consumption, accumulating evidence suggests these compounds may affect metabolic homeostasis; however, there is no consensus on the role of frequent sweetener intake in appetite and weight loss. We sought to determine whether frequent intake of commercial sweeteners induces changes in the JAK2/STAT3 signaling pathway in the brain of mice, as it is involved in the regulation of appetite and body composition. We supplemented adult BALB/c mice with sucrose, steviol glycosides (SG), or sucralose, daily, for 6 weeks. After supplementation, we evaluated body composition and expression of total and phosphorylated JAK2, STAT3, and Akt, as well as SOCS3 and ObRb, in brain tissue. Our results show that frequent intake of commercial SG decreases energy intake, adiposity, and weight gain in male animals, while increasing the expression of pJAK2 and pSTAT3 in the brain, whereas sucralose increases weight gain and pJAK2 expression in females. Our results suggest that chronic intake of commercial sweeteners elicits changes in signaling pathways that have been related to the control of appetite and energy balance in vivo, which may have relevant consequences for the nutritional state and long term health of the organism.


Assuntos
Encéfalo/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/farmacologia , Animais , Feminino , Janus Quinase 2/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptores para Leptina/biossíntese , Fator de Transcrição STAT3/biossíntese , Proteína 3 Supressora da Sinalização de Citocinas/biossíntese
19.
J Neurosurg ; 130(3): 977-988, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29521586

RESUMO

OBJECTIVE: Ischemic stroke remains a significant cause of death and disability in industrialized nations. Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) of the JAK2/STAT3 pathway play important roles in the downstream signal pathway regulation of ischemic stroke-related inflammatory neuronal damage. Recently, microRNAs (miRNAs) have emerged as major regulators in cerebral ischemic injury; therefore, the authors aimed to investigate the underlying molecular mechanism between miRNAs and ischemic stroke, which may provide potential therapeutic targets for ischemic stroke. METHODS: The JAK2- and JAK3-related miRNA (miR-135, miR-216a, and miR-433) expression levels were detected by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis in both oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells and mouse brain with middle cerebral artery occlusion (MCAO)-induced ischemic stroke. The miR-135, miR-216a, and miR-433 were determined by bioinformatics analysis that may target JAK2, and miR-216a was further confirmed by 3' untranslated region (3'UTR) dual-luciferase assay. The study further detected cell apoptosis, the level of lactate dehydrogenase, and inflammatory mediators (inducible nitric oxide synthase [iNOS], matrix metalloproteinase-9 [MMP-9], tumor necrosis factor-α [TNF-α], and interleukin-1ß [IL-1ß]) after cells were transfected with miR-NC (miRNA negative control) or miR-216a mimics and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) damage with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V-FITC/PI, Western blots, and enzyme-linked immunosorbent assay detection. Furthermore, neurological deficit detection and neurological behavior grading were performed to determine the infarction area and neurological deficits. RESULTS: JAK2 showed its highest level while miR-216a showed its lowest level at day 1 after ischemic reperfusion. However, miR-135 and miR-433 had no obvious change during the process. The luciferase assay data further confirmed that miR-216a can directly target the 3'UTR of JAK2, and overexpression of miR-216a repressed JAK2 protein levels in OGD/R-treated neuronal cells as well as in the MCAO model ischemic region. In addition, overexpression of miR-216a mitigated cell apoptosis both in vitro and in vivo, which was consistent with the effect of knockdown of JAK2. Furthermore, the study found that miR-216a obviously inhibited the inflammatory mediators after OGD/R, including inflammatory enzymes (iNOS and MMP-9) and cytokines (TNF-α and IL-1ß). Upregulating miR-216a levels reduced ischemic infarction and improved neurological deficit. CONCLUSIONS: These findings suggest that upregulation of miR-216a, which targets JAK2, could induce neuroprotection against ischemic injury in vitro and in vivo, which provides a potential therapeutic target for ischemic stroke.


Assuntos
Apoptose/genética , Isquemia Encefálica/genética , Regulação da Expressão Gênica/genética , Inflamação/genética , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Regiões 3' não Traduzidas/genética , Animais , Infarto Encefálico/patologia , Masculino , Camundongos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Cultura Primária de Células , Acidente Vascular Cerebral/genética , Regulação para Cima
20.
Histopathology ; 72(2): 259-269, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28795418

RESUMO

AIMS: CD274 (PDL1) and JAK2 (9p24.1) gene amplifications have been recently described in pulmonary carcinomas in association with programmed death-ligand 1 (PD-L1) expression. Furthermore, PTEN loss has been explored preclinically in relation to PD-L1 expression. Our aim was to determine whether these genomic alterations affect PD-L1 expression levels in non-small-cell lung cancer. METHODS AND RESULTS: PD-L1 and PTEN expression determined by immunohistochemistry (IHC), and CD274, JAK2 and PTEN copy number alterations (CNAs) determined by fluorescence in-situ hybridisation, were studied in 171 pulmonary carcinoma specimens. PD-L1 expression was positive in 40 cases (23.3%), and CD274 amplification was present in 14 tumours (8.8%). Concordance between both events was found in 12 of 14 amplified cases (P = 0.0001). We found nine JAK2-amplified cases (5.7%), seven with PD-L1 expression (P = 0.0006). Moreover, six of the seven cases had JAK2 and CD274 coamplification (9p24.1 genomic amplification). Remarkably, the average PD-L1 IHC score was higher in these amplified cases (230 versus 80; P = 0.001). Non-statistical associations were observed between PD-L1 expression and PTEN loss and PTEN deletions. CONCLUSIONS: We describe a subset of patients (8.2%) who had 9p24.1 amplifications resulting in high expression of PD-L1. Our results provide evidence for genomic up-regulation of PD-L1 expression in non-small-cell lung cancer.


Assuntos
Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/genética , Janus Quinase 2/genética , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Amplificação de Genes , Humanos , Janus Quinase 2/biossíntese , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA