Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Data ; 11(1): 269, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443357

RESUMO

Platycarya strobilacea belongs to the walnut family (Juglandaceae), is commonly known as species endemic to East Asia, and is an ecologically important, wind pollinated, woody deciduous tree. To facilitate this ancient tree for the ecological value and conservation of this ancient tree, we report a new high-quality genome assembly of P. strobilacea. The genome size was 677.30 Mb, with a scaffold N50 size of 45,791,698 bp, and 98.43% of the assembly was anchored to 15 chromosomes. We annotated 32,246 protein-coding genes in the genome, of which 96.30% were functionally annotated in six databases. This new high-quality assembly of P. strobilacea provide valuable resource for the phylogenetic and evolutionary analysis of the walnut family and angiosperm.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Juglandaceae , Ásia Oriental , Evolução Biológica , Cromossomos , Juglandaceae/genética , Filogenia
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279343

RESUMO

Adventitious root (AR) formation is vital for successful cutting propagation in plants, while the dynamic regulation of phytohormones is viewed as one of the most important factors affecting AR formation. Cyclocarya paliurus, a hard-to-root plant, is faced with the bottleneck of cloning its superior varieties in practice. In this study, ten treatments were designed to figure out the best hormone-based formula for promoting AR formation in softwood cuttings and explore their hormone-regulating mechanisms. Both the rooting process and the rooting parameters of the softwood cuttings were significantly affected by different hormone-based formulas (p < 0.05), while the greatest rooting rate (93%) and root quality index were achieved in the H3 formula (SR3:IR3 = 1:1). Significant differences in the measured phytohormone concentrations, as well as in their ratios, were detected among the cuttings sampled at various AR formation stages (p < 0.05), whereas the dynamics for each phytohormone varied greatly during AR formation. The transcriptome analysis showed 12,028 differentially expressed genes (DEGs) identified during the rooting process of C. paliurus cuttings, while the KEGG enrichment analysis indicated that a total of 20 KEGG terms were significantly enriched in all the comparison samples, with 253 DEGs detected in signal transduction. Furthermore, 19 genes with vital functions in regulating the hormone signaling pathway were identified by means of a WGCNA analysis. Our results not only optimize a hormone-based formula for improving the rooting of C. paliurus cuttings but also provide an insight into the hormonal regulatory network during AR formation in softwood C. paliurus cuttings.


Assuntos
Juglandaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Juglandaceae/genética , Hormônios
3.
Front Biosci (Landmark Ed) ; 28(9): 218, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37796691

RESUMO

BACKGROUND: One of the crucial processes for small RNA synthesis and plant disease resistance is RNA interference (RNAi). Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), double-stranded RNA binding (DRB), and Argonaute are important proteins implicated in RNAi (AGO). Numerous significant woody plants belong to the Juglandaceae; walnut is one of the four groups of woody plants on earth and one of the four groups of dried fruits. METHODS: In order to correlate walnuts and their homologues, this work integrated numerous web resources from structural analysis and transcriptome data collected from gene families in order to elucidate the evolution and functional differentiation of RNA-related proteins in the walnut (Juglans rega) genome. RESULTS: 5 DCL genes, 13 RDR genes, 15 DRB genes, and 15 AGO genes are found in the walnut genome and encode conserved protein domains and motifs with similar subcellular distribution.There are three classes and seven subclasses of walnut AGO proteins. RDRS are primarily split into four categories, whereas DRBs can be divided into six. DCLs are separated into four groups. The walnut RDR1 copy number of 9 is the exception, with 7 of those copies being dispersed in clusters on chromosome 16. Proteins are susceptible to various levels of purification selection, but in walnut, purification selection drives gene creation. These findings also indicated some resemblance in other plants belonging to the walnut family. Under various tissues and stresses, many RNA-related genes in walnut produced abundant, selective expression. CONCLUSIONS: In this study, the genome of the Juglandaceae's DCL, RDR, DRB, and AGO gene families were discovered and analysed for the first time. The evolution, structure, and expression characteristics of these families were also preliminary studied, offering a foundation for the development and breeding of the walnut RNAi pathway.


Assuntos
Juglandaceae , Interferência de RNA , Juglandaceae/genética , Juglandaceae/metabolismo , Plantas/genética , RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
4.
Sci Data ; 10(1): 507, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532689

RESUMO

Cyclocarya paliurus, an endemic species in the genus Juglandaceae with the character of heterodichogamy, is one of triterpene-rich medicinal plants in China. To uncover the genetic mechanisms behind the special characteristics, we sequenced the genomes of two diploid (protandry, PA-dip and protogyny, PG-dip) and one auto-tetraploid (PA-tetra) C. paliurus genomes. Based on 134.9 (~225x), 75.5 (~125x) and 271.8 Gb (~226x) subreads of PacBio platform sequencing data, we assembled 586.62 Mb (contig N50 = 1.9 Mb), 583.45 Mb (contig N50 = 1.4 Mb), and 2.38 Gb (contig N50 = 430.9 kb) for PA-dip, PG-dip and PA-tetra genome, respectively. Furthermore, 543.53, 553.87, and 2168.65 Mb in PA-dip, PG-dip, and PA-tetra, were respectively anchored to 16, 16, and 64 pseudo-chromosomes using over 65.4 Gb (~109x), 68 Gb (~113x), and 264 (~220x) Hi-C sequencing data. Annotation of PA-dip, PG-dip, and PA-tetra genome assembly identified 34,699, 35,221, and 34,633 protein-coding genes (90,752 gene models) or allele-defined genes, respectively. In addition, 45 accessions from nine locations were re-sequenced, and more than 10 × coverage reads were generated.


Assuntos
Genoma de Planta , Juglandaceae , Cromossomos , Diploide , Juglandaceae/genética , Anotação de Sequência Molecular , Filogenia , Tetraploidia
5.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515592

RESUMO

The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.


Assuntos
Genoma de Cloroplastos , Juglandaceae , Filogenia , Evolução Molecular , Juglandaceae/genética , Plastídeos/genética , Genômica
6.
Ecotoxicol Environ Saf ; 263: 115307, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499386

RESUMO

Urban garden plants are frequently affected by drought, which can hinder their growth, development, and greening effect. Previous studies have indicated that Chinese wingnut (Pterocarya stenoptera) responds to drought stress by increasing the expression of thiamine synthesis genes. In this study, it was found that exogenous thiamine can effectively alleviate the negative effects of drought stress on plants. Forward transcriptome sequencing and physiological tests were further conducted to reveal the molecular mechanism of thiamine in alleviating drought stress. Results showed that exogenous thiamine activated the expression of eight chlorophyll synthesis genes in Chinese wingnut under drought stress. Moreover, physiological indicators proved that chlorophyll content increased in leaves of Chinese wingnut with thiamine treatment under drought stress. Photosynthesis genes were also activated in Chinese wingnut treated with exogenous thiamine under drought stress, as supported by photosynthetic indicators PIabs and PItotal. Additionally, exogenous thiamine stimulated the expression of genes in the auxin-activated signaling pathway, thus attenuating the effects of drought stress. This study demonstrates the molecular mechanism of thiamine in mitigating the effects of drought stress on non-model woody plants lacking transgenic systems. This study also provides an effective method to mitigate the negative impacts of drought stress on plants.


Assuntos
Secas , Juglandaceae , Tiamina , Transcriptoma , Clorofila , Fotossíntese/genética , Estresse Fisiológico/genética , Tiamina/genética , Tiamina/farmacologia , Juglandaceae/genética , Juglandaceae/metabolismo , Juglandaceae/fisiologia , China
7.
Plant Physiol Biochem ; 201: 107856, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354727

RESUMO

Cyclocarya paliurus (Batal.) Iljinskaja is a multiple function tree species used for functional food and valued timber production. Carbohydrates, especially water-soluble carbohydrates, play an important role in osmotic protection, signal transduction and carbon storage. Under the circumstance of global climate change the abiotic stress would restrict the development of C. paliurus plantation, whereas there is few knowledge on the regulatory mechanisms of sugar metabolism under drought stress in C. paliurus. To investigate the drought response of C. paliurus at molecular level, we conducted an integrated analysis of transcriptomic and metabolomic of C. paliurus at three PEG-induced drought stress levels (0%: control; 15%: moderate drought; 25%: severe drought) in short term. Both moderate and severe drought treatments activated the chemical defense with lowering relative water content, and enhancing the contents of soluble protein, proline and malondialdehyde in the leaves. Meanwhile, alterations in the expression of differentially expressed genes and carbohydrate metabolism profiles were observed among the treatments. Weighted gene co-expression network analysis (WGCNA) showed 3 key modules, 8 structural genes (such as genes encoding beta-fructofuranosidase (INV), sucrose synthase (SUS), raffinose synthase (RS)) and 14 regulatory transcription factors were closely linked to sugar metabolism. Our results provided the foundation to understand the response mechanism of sugar metabolism in C. paliurus under drought stress, and would drive progress in breeding of drought-tolerant varieties and plantation development of the species.


Assuntos
Juglandaceae , Transcriptoma , Transcriptoma/genética , Plântula/metabolismo , Secas , Melhoramento Vegetal , Metabolismo dos Carboidratos/genética , Carboidratos , Juglandaceae/genética , Água/metabolismo , Açúcares/metabolismo
8.
Plant Physiol Biochem ; 199: 107726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167758

RESUMO

Triterpenoids, known for their anti-inflammatory, anticancer, and hypoglycemic properties, are the major bioactive components in Cyclocarya paliurus (Batal.) Iljinskaja. Selecting elite individuals with high triterpenoids content is the basis of C. paliurus industry for medicinal use. In this study, seasonal variation patterns of total triterpenoids and five triterpene monomers accumulation for three groups with different total triterpenoid contents (TTC; H: 59.74-64.03 mg g-1; M: 47.66-57.08 mg g-1, and L: 35.26-42.22 mg g-1) were surveyed. Seasonal expression dynamics of 6 key genes relevant to triterpenoids biosynthesis, including HMGR, DXR, SQS, SE, LUS, and ß-AS, were described by quantitative real-time PCR (qRT-PCR) for three groups. The expression levels of HMGR, SE, LUS, and ß-AS genes in group H were higher than in groups M and L. In addition, Pearson correlation analysis showed that they were significantly positively correlated with triterpene accumulation, and the expression level of SE gene not only was significantly correlated with downstream genes, but also exhibited a linear relationship with TTC, especially in September. These results suggest that SE gene could serve as an effective make for screening elite individuals with high TTC from the germplasm of C. paliurus for medicinal use. Further testing on randomly selected individuals in next September proved the feasibility and reliability of SE gene in assisted selection. Also, we successfully cloned the full-length cDNA of SE. Thus, our work provides an efficient way to attain superior genotypes to develop medicinal industry of C. paliurus in practice.


Assuntos
Juglandaceae , Plantas Medicinais , Triterpenos , Plantas Medicinais/genética , Esqualeno Mono-Oxigenase , Reprodutibilidade dos Testes , Juglandaceae/genética , Genótipo , Folhas de Planta
9.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216901

RESUMO

When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.


Assuntos
Carbonato de Cálcio , Juglandaceae , Ásia Oriental , Cálcio , Especiação Genética , Genômica , Juglandaceae/genética , Juglandaceae/fisiologia
10.
Nat Commun ; 14(1): 617, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739280

RESUMO

In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.


Assuntos
Carya , Juglandaceae , Filogenia , Juglandaceae/genética , Genoma , Carya/genética , Reparo do DNA/genética
11.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293519

RESUMO

The GRF gene family plays an important role in plant growth and development as regulators involved in plant hormone signaling and metabolism. However, the Juglandaceae GRF gene family remains to be studied. Here, we identified 15, 15, 19, and 20 GRF genes in J. regia, C. illinoinensis, J. sigillata, and J. mandshurica, respectively. The phylogeny shows that the Juglandaceae family GRF is divided into two subfamilies, the ε-group and the non-ε-group, and that selection pressure analysis did not detect amino acid loci subject to positive selection pressure. In addition, we found that the duplications of the Juglandaceae family GRF genes were all segmental duplication events, and a total of 79 orthologous gene pairs and one paralogous homologous gene pair were identified in four Juglandaceae families. The Ka/KS ratios between these homologous gene pairs were further analyzed, and the Ka/KS values were all less than 1, indicating that purifying selection plays an important role in the evolution of the Juglandaceae family GRF genes. The codon bias of genes in the GRF family of Juglandaceae species is weak, and is affected by both natural selection pressure and base mutation, and translation selection plays a dominant role in the mutation pressure in codon usage. Finally, expression analysis showed that GRF genes play important roles in pecan embryo development and walnut male and female flower bud development, but with different expression patterns. In conclusion, this study will serve as a rich genetic resource for exploring the molecular mechanisms of flower bud differentiation and embryo development in Juglandaceae. In addition, this is the first study to report the GRF gene family in the Juglandaceae family; therefore, our study will provide guidance for future comparative and functional genomic studies of the GRF gene family in the Juglandaceae specie.


Assuntos
Juglandaceae , Juglandaceae/genética , Evolução Molecular , Reguladores de Crescimento de Plantas , Genoma de Planta , Filogenia , Família Multigênica , Aminoácidos/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
12.
Plant Physiol Biochem ; 188: 70-80, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988389

RESUMO

In China, lots of Cyclocarya paliurus plantations have been established for tea and functional food production on nitrogen (N)-limited land. The optimum N levels require for biosynthesis and accumulation of carbon-based bioactive substances vary among plant species. This study integrated field trial with hydroponic culture to assess impact of nitrogen addition on accumulation and relative gene expression level of carbon-based secondary metabolites in C. paliurus. N addition significantly influenced not only contents of polyphenols, flavonoids and triterpenoids and relative gene expression levels of their biosynthetic pathway in C. paliurus leaves but also leaf biomass production and the bioactive substance accumulations. An intermediate N addition induced the highest contents of polyphenols, flavonoids and triterpenoids in leaves, but the optimized accumulation of these bioactive substances in the leaves was the trade-off between their contents and leaf biomass production. Correlation analysis showed that related gene expression levels were closely correlated with contents of their leaf corresponding secondary metabolites. Compared with ratios of carbon/N (C/N) and carbon/phosphorus (C/P) in the soil, ratios of C/N and C/P in the leaves were more strongly related to the contents and accumulations of polyphenols, flavonoids and triterpenoids. To obtain higher yields of targeted phytochemicals, the threshold ratios of C/N and C/P in the leaves are recommended for N and P fertilization at similar sites. Overall, our findings would provide the theoretical basis and technical support for manipulating N fertilization in C. paliurus plantations to obtain higher accumulations of targeted bioactive substances.


Assuntos
Juglandaceae , Triterpenos , Carbono/metabolismo , Flavonoides/análise , Expressão Gênica , Juglandaceae/genética , Juglandaceae/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Triterpenos/metabolismo
13.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743203

RESUMO

Cyclocarya paliurus is an important medical plant owing to the diverse bioactive compounds in its leaves. However, the heterodichogamy with female and male functions segregation within protandry (PA) or protogyny (PG) may greatly affect seed quality and its plantations for medicinal use. To speculate on the factor playing the dominant role in regulating heterodichogamy in C. paliurus, based on phenotypic observations, our study performed a multi comparison transcriptome analysis on female and male buds (PG and PA types) using RNA-seq. For the female and male bud comparisons, a total of 6753 differentially expressed genes (DEGs) were detected. In addition, functional analysis revealed that these DEGs were significantly enriched in floral development, hormone, and GA-related pathways. As the dominant hormones responsible for floral differentiation and development, gibberellins (GAs) in floral buds from PG and PA types were quantified using HPLC-MS. Among the tested GAs, GA3 positively regulated the physiological differentiation (S0) and germination (S2) of floral buds. The dynamic changes of GA3 content and floral morphological features were consistent with the expression levels of GA-related genes. Divergences of GA3 contents at S0 triggered the asynchronism of physiological differentiation between male and female buds of intramorphs (PA-M vs. PA-F and PG-F vs. PG-M). A significant difference in GA3 content enlarged this asynchronism at S2. Thus, we speculate that GA3 plays the dominant role in the formation of heterodichogamy in C. paliurus. Meanwhile, the expression patterns of GA-related DEGs, including CPS, KO, GA20ox, GA2OX, GID1, and DELLA genes, which play central roles in regulating flower development, coincided with heterodichogamous characteristics. These results support our speculations well, which should be further confirmed.


Assuntos
Regulação da Expressão Gênica de Plantas , Juglandaceae , Flores/metabolismo , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Juglandaceae/genética , Transcriptoma
14.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408785

RESUMO

R2R3-MYB transcription factors are most abundant in the MYB superfamily, while the R2R3-MYB genes play an important role in plant growth and development, especially in response to environmental stress. Cyclocarya paliurus is a multifunction tree species, and the existing resources cannot meet the requirement for its leaf production and medical use. Therefore, lands with some environmental stresses would be potential sites for developing C. paliurus plantations. However, the function of R2R3-MYB genes in C.paliurus in response to environmental stress remains unknown. In this study, to identify the roles of R2R3-MYB genes associated with salt stress response, 153 CpaMYB genes and their corresponding protein sequences were identified from the full-length transcriptome. Based on the comparison with MYB protein sequences of Arabidopsis thaliana, 69 R2R3-MYB proteins in C. paliurus were extracted for further screening combined with conserved functional domains. Furthermore, the MYB family members were analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting element analysis, and gene differential expression under different salt treatments using both a pot experiment and hydroponic experiment. The results showed that the R2R3-MYB genes of C.paliurus conserved functional domains, whereas four R2R3-MYB genes that might respond to salt stress via regulating plant hormone signals were identified in this study. This work provides a basis for further functional characterization of R2R3-MYB TFs in C. paliurus.


Assuntos
Arabidopsis , Juglandaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Juglandaceae/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163101

RESUMO

Photosynthesis is the primary life process in nature, and how to improve photosynthetic capacity under abiotic stresses is crucial to carbon fixation and plant productivity. As a multi-functional tree species, the leaves of Cyclocarya paliurus possess antihypertensive and hypoglycemic activities. However, the regulatory mechanism involved in the photosynthetic process of C. paliurus exposed to salinity has not yet been elucidated. In this study, the photosynthetic characteristics of C. paliurus seedlings, such as photosynthetic rate (Pn), stomatal conductance (Gs), and electron transfer rate (ETR), were investigated under different salt concentrations, while the metabolome and transcriptome analyses were conducted to unravel its molecular regulatory mechanisms. Salt stress not only significantly affected photosynthetic characteristics of C. paliurus seedlings, but also severely modified the abundance of metabolites (such as fumaric acid, sedoheptulose-7-phosphate, d-fructose-1,6-bisphosphate, and 3-phospho-d-glyceroyl phosphate) involved in central carbon metabolism, and the expression of photosynthetic genes. Through the co-expression network analysis, a total of 27 transcription factors (including ERFs, IDD, DOF, MYB, RAP) were identified to regulate photosynthetic genes under salt stress. Our findings preliminarily clarify the molecular regulatory network involved in the photosynthetic process of C. paliurus under salt stress and would drive progress in improving the photosynthetic capacity and productivity of C. paliurus by molecular technology.


Assuntos
Regulação da Expressão Gênica de Plantas , Juglandaceae/crescimento & desenvolvimento , Metaboloma , Fotossíntese , Proteínas de Plantas/metabolismo , Estresse Salino , Transcriptoma , Juglandaceae/genética , Juglandaceae/metabolismo , Proteínas de Plantas/genética
16.
BMC Ecol Evol ; 21(1): 191, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674641

RESUMO

BACKGROUND: The walnut family (Juglandaceae) contains commercially important woody trees commonly called walnut, wingnut, pecan and hickory. Phylogenetic relationships and diversification within the Juglandaceae are classic and hot scientific topics that have been elucidated by recent fossil, morphological, molecular, and (paleo) environmental data. Further resolution of relationships among and within genera is still needed and can be achieved by analysis of the variation of chloroplast, mtDNA, and nuclear genomes. RESULTS: We reconstructed the backbone phylogenetic relationships of Juglandaceae using organelle and nuclear genome data from 27 species. The divergence time of Juglandaceae was estimated to be 78.7 Mya. The major lineages diversified in warm and dry habitats during the mid-Paleocene and early Eocene. The plastid, mitochondrial, and nuclear phylogenetic analyses all revealed three subfamilies, i.e., Juglandoideae, Engelhardioideae, Rhoipteleoideae. Five genera of Juglandoideae were strongly supported. Juglandaceae were estimated to have originated during the late Cretaceous, while Juglandoideae were estimated to have originated during the Paleocene, with evidence for rapid diversification events during several glacial and geological periods. The phylogenetic analyses of organelle sequences and nuclear genome yielded highly supported incongruence positions for J. cinerea, J. hopeiensis, and Platycarya strobilacea. Winged fruit were the ancestral condition in the Juglandoideae, but adaptation to novel dispersal and regeneration regimes after the Cretaceous-Paleogene boundary led to the independent evolution of zoochory among several genera of the Juglandaceae. CONCLUSIONS: A fully resolved, strongly supported, time-calibrated phylogenetic tree of Juglandaceae can provide an important framework for studying classification, diversification, biogeography, and comparative genomics of plant lineages. Our addition of new, annotated whole chloroplast genomic sequences and identification of their variability informs the study of their evolution in walnuts (Juglandaceae).


Assuntos
Genoma de Cloroplastos , Juglandaceae , Fósseis , Juglandaceae/genética , Filogenia , Plastídeos
17.
Tree Physiol ; 41(11): 2189-2197, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960380

RESUMO

Cyclocarya paliurus (Batal.) Iljinskaja, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport and accumulation in C. paliurus during the growing season, gene cloning, gene expression and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete coding sequences (CDSs) of three genes, CpHMGR, CpDXR and CpSQS, were obtained from GenBank and RACE. RNA in situ hybridization signals of the three genes mainly occurred in the epidermis, palisade tissue, phloem and xylem of leaf, shoot and root, with the signals generally consistent with the accumulation of metabolites in tissues, except in the xylem. Both gene expression and triterpenoid accumulations showed seasonal variations in all organs. However, total triterpenoid content in the leaves was significantly higher than that in the shoots, with the maximum in shoots in August and in leaves in October. According to Pearson correlation analysis, triterpenoid accumulation in the leaves was significantly positively related with the relative expression of CpSQS. However, the relation between gene expression and accumulation was dependent on the role of the gene in the pathway as well as on the plant organ. The results suggested that most of the intermediates catalyzed by CpHMGR and CpDXR in young shoots and roots were used in growth and flowering in the spring, whereas subsequent triterpenoid biosynthesis in the downstream catalyzed by CpSQS mainly occurred in the leaves by using transferred and in situ intermediates as substrates. Thus, this study provides a reference to improve triterpenoid accumulation in future C. paliurus plantations.


Assuntos
Juglandaceae , Triterpenos , Hibridização In Situ , Juglandaceae/química , Juglandaceae/genética , Folhas de Planta/química , Folhas de Planta/genética , RNA/análise , Triterpenos/análise
18.
Arch Microbiol ; 203(5): 2147-2155, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33611635

RESUMO

Enterococcus faecalis (E. faecalis) is an indigenous intestinal bacterium and has potential to be applied as probiotic supplement. Low pH is one of the main stresses that E. faecalis has to deal with to colonize in the gastrointestinal tract. Previous study indicated low concentration of flavonoids may enhance the tolerance of probiotic to environmental stress. In the present research, transcriptome analysis was employed to investigate the influence of Cyclocarya paliurus flavonoids (CPF) on E. faecalis exposed to low pH environment. The results revealed that under the stress of low pH, genes related to cell wall and membrane, transmembrane transport, metabolism process, energy production, and conversion stress proteins were significantly differentially expressed. And certain undesired changes of which (such as genes for MFS transporter were downregulated) could be partially mitigated by CPF intervention, indicating their capacity to improve the low pH tolerance of E. faecalis. Results from this study deepened our understanding of the beneficial role of CPF on the probiotic in the gastrointestinal environment.


Assuntos
Transporte Biológico/genética , Enterococcus faecalis/metabolismo , Flavonoides/metabolismo , Juglandaceae/metabolismo , Estresse Fisiológico/fisiologia , Parede Celular/fisiologia , Regulação para Baixo , Enterococcus faecalis/genética , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Juglandaceae/genética , Probióticos/metabolismo , Transcriptoma/genética
19.
Mol Phylogenet Evol ; 152: 106918, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738292

RESUMO

Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis under global warming and anthropogenic activity. In particular, delineation of traditional classifications in view of the complexity of species requires an integrative approach to effectively define species boundaries, and this is a major focus of systematic biology. Here, we explored species delimitation of Engelhardia in tropical and subtropical Asia. In total, 716 individuals in 71 populations were genotyped using five chloroplast regions, one nuclear DNA region (nrITS), and 11 nuclear simple sequence repeats (nSSR). Phylogenetic trees were constructed and relationships among species were assessed. Molecular analyses were then combined with 14 morphological characteristics of 720 specimens to further explore the species boundaries of Engelhardia. Integrating phylogenetic and morphological clusters provided well-resolved relationships to delineate seven species. The results suggested that: first, that E. fenzelii, E. roxburghiana, E. hainanensis, E. apoensis, and E. serrata are distinct species; second, E. spicata var. spicata, E. spicata var. aceriflora, E. spicata var. colebrookeana, and E. rigida should be combined under E. spicata and treated as a species complex; third, E. serrata var. cambodica should be raised to species level and named E. villosa. We illuminated that bias thresholds determining the cluster number for delimiting species boundaries were substantially reduced when morphological data were incorporated. Our results urge caution when using the concepts of subspecies and varieties in order to prevent confusion, particularly with respect to species delimitation for tropical and subtropical species. In some cases, re-ranking or combining subspecies and/or varieties may enable more accurate species delimitation.


Assuntos
Juglandaceae/classificação , Filogenia , Animais , Ásia , Biodiversidade , Núcleo Celular/genética , Cloroplastos/genética , DNA de Plantas/genética , Juglandaceae/anatomia & histologia , Juglandaceae/genética , Repetições de Microssatélites , Especificidade da Espécie
20.
Mol Phylogenet Evol ; 147: 106802, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217170

RESUMO

The walnut family Juglandaceae was widely distributed in the Northern Hemisphere while several extant genera now exhibit intercontinental disjunctions. Recent progress in the systematics of Juglandaceae has greatly broadened our knowledge about its origin and evolution. However, there are still uncertainties about the intergeneric relationships within Juglandaceae, and discrepancies between fossil records and inferred divergence times for certain lineages were observed. In this study, well-resolved phylogenies of the Juglandaceae are reconstructed based on both the nuclear RAD-Seq and the whole chloroplast genome data. Our results support the Juglandoideae topology of (Hicoreae, (Platycaryeae, Juglandeae)) at the tribal level. Within Juglandeae, a discordant position of Pterocarya was detected between nuclear and plastid genome data, and a more likely topology (nuclear), (Juglans, (Pterocarya, Cyclocarya)), was discussed based on evidence from molecular data and fossil records. Based on carefully selected fossil calibrations, the divergence times of extant lineages were estimated and they corroborated well with fossil records (especially concerning Juglans and Pterocarya). Four sections within Juglans were strongly supported by the nuclear data. Within Juglans, the incongruent position of J. hopeiensis was recovered between the nuclear and plastid genomes. Yet the origin and evolutionary history of J. cinerea and J. hopeiensis are supported to be complicated and need further clarification. Integrative evidence from the fossil records, phylogeny and lineage divergence times shows that Juglandoideae originated in North America, and migrated to Eurasia via both the Bering and the North Atlantic land bridges. Our study shows the potential of integrative biogeographic studies for illuminating the evolutionary history of Juglandaceae.


Assuntos
Núcleo Celular/genética , Genoma de Cloroplastos/genética , Juglandaceae/genética , Filogenia , Análise de Sequência de DNA , Evolução Molecular , Variação Genética , América do Norte , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA