Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Am Chem Soc ; 146(33): 22869-22873, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115272

RESUMO

Tubular structures exist broadly in biological systems and exhibit important functions including mediating cellular communications. The construction of artificial analogues in living cells would provide a new strategy for chemotherapy. In this report, a kind of supramolecular channel has been constructed within intercellular gaps by mimicking the assembly process and structure of natural gap junctional channels, which consist of hydrophobic tubular modules located in the adjacent cell membranes and hydrophilic modules within the extracellular space. The assembly of the channels was driven by electrostatic interactions. The channels could inhibit tumor cell invasion by preventing cell migration.


Assuntos
Movimento Celular , Humanos , Movimento Celular/efeitos dos fármacos , Junções Comunicantes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/metabolismo , Canais Iônicos/química , Linhagem Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(33): e2403903121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116127

RESUMO

Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.


Assuntos
Conexinas , Humanos , Conexinas/metabolismo , Conexinas/genética , Transporte de Íons , Animais , Mutação , Íons/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética
3.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125879

RESUMO

This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-ß1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFß-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.


Assuntos
Conexina 43 , Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Feminino , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Bexiga Urinária/patologia , Conexina 43/metabolismo , Transplante de Células-Tronco/métodos , Transdução de Sinais , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Colágeno/metabolismo
4.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103891

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Assuntos
Fibrilação Atrial , Fibrose , Átrios do Coração , Miócitos Cardíacos , beta Catenina , Humanos , Fibrilação Atrial/patologia , Fibrilação Atrial/metabolismo , beta Catenina/metabolismo , Animais , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Caderinas/metabolismo , Junções Comunicantes/metabolismo , Pessoa de Meia-Idade , Camundongos , Feminino , Conexina 43/metabolismo , Camundongos Endogâmicos C57BL , Idoso
5.
Elife ; 132024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994821

RESUMO

Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.


Neurons communicate with each other through specialized structures known as synapses. At chemical synapses, the cells do not physically interact as they rely instead on molecules called neurotransmitters to pass along signals. At electrical synapses, however, neurons are directly connected via gap junctions, which are clusters of intercellular channels that allow ions and other small compounds to move from one cell to another. Both electrical and chemical synapses play critical roles in neural circuits, and both exhibit some amount of plasticity ­ they weaken or strengthen depending on how often they are used, an important feature for the brain to adapt to the needs of the environment. Yet the structure and molecular organization of electrical synapses have remained poorly understood compared to their chemical counterparts. In response, Cárdenas-García, Ijaz and Pereda took advantage of a new approach known as expansion microscopy to examine the electrical synapse that connects neurons bringing sound information to a pair of unusually large neurons in the brain of most bony fish. With this method, a biological sample is prepared in such a way that its size increases, but the relative position of its components is preserved. This allows scientists to better observe structures that would otherwise be too difficult to capture using traditional microscopy techniques. Experiments in larval zebrafish revealed that contrary to previous assumptions, the electrical synapse was formed of not one but multiple gap junctions of various sizes closely associated with a range of structural and signaling molecules typically found in adherens junctions (a type of structure that physically links cells together). The team suggests that these molecular actors could work to ensure that the multiple gap junctions act in concert at the synapse. Overall, these findings offer a new perspective on how electrical synapses are organized and regulated, which refines our understanding of how the nervous system functions both in health and in disease.


Assuntos
Sinapses Elétricas , Junções Comunicantes , Peixe-Zebra , Animais , Sinapses Elétricas/fisiologia , Junções Comunicantes/metabolismo , Microscopia/métodos , Comunicação Celular , Transmissão Sináptica/fisiologia
6.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000353

RESUMO

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Assuntos
Citoesqueleto de Actina , Conexina 26 , Conexina 43 , Junções Comunicantes , Proteína rhoA de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 26/metabolismo , Humanos , Animais , Membrana Celular/metabolismo , Actinas/metabolismo
7.
Cells ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995001

RESUMO

BACKGROUND: Extravillous trophoblasts (EVTs) form stratified columns at the placenta-uterus interface. In the closest part to fetal structures, EVTs have a proliferative phenotype, whereas in the closest part to maternal structures, they present a migratory phenotype. During the placentation process, Connexin 40 (Cx40) participates in both the proliferation and migration of EVTs, which occurs under hypoxia. However, a possible interaction between hypoxia and Cx40 has not yet been established. METHODS: We developed two cellular models, one with "low Cx40" (Jeg-3), which reflected the expression of this protein found in migratory EVTs, and one with "high Cx40" (Jeg-3/hCx40), which reflected the expression of this protein in proliferative cells. We analyzed the migration and proliferation of these cells under normoxic and hypoxic conditions for 24 h. Jeg-3 cells under hypoxia increased their migratory capacity over their proliferative capacity. However, in Jeg-3/hCx40, the opposite effect was induced. On the other hand, hypoxia promoted gap junction (GJ) plaque formation between neighboring Jeg-3 cells. Similarly, the activation of a nitro oxide (NO)/cGMP/PKG-dependent pathway induced an increase in GJ-plaque formation in Jeg-3 cells. CONCLUSIONS: The expression patterns of Cx40 play a crucial role in shaping the responses of EVTs to hypoxia, thereby influencing their migratory or proliferative phenotype. Simultaneously, hypoxia triggers an increase in Cx40 gap junction (GJ) plaque formation through a pathway dependent on NO.


Assuntos
Hipóxia Celular , Movimento Celular , Proliferação de Células , Conexinas , Proteína alfa-5 de Junções Comunicantes , Junções Comunicantes , Trofoblastos , Trofoblastos/metabolismo , Humanos , Junções Comunicantes/metabolismo , Conexinas/metabolismo , Feminino , Gravidez , Linhagem Celular , Modelos Biológicos , Trofoblastos Extravilosos
8.
Invest Ophthalmol Vis Sci ; 65(8): 19, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984874

RESUMO

Purpose: The purpose of this study was to utilize multi-parametric magnetic resonance imaging (MRI) to investigate in vivo age-related changes in the physiology and optics of mouse lenses where Connexin 50 has been deleted (Cx50KO) or replaced by Connexin 46 (Cx50KI46). Methods: The lenses of transgenic Cx50KO and Cx50KI46 mice were imaged between 3 weeks and 6 months of age using a 7T MRI. Measurements of lens geometry, the T2 (water-bound protein ratios), the refractive index (n), and T1 (free water content) values were calculated by processing the acquired images. The lens power was calculated from an optical model that combined the geometry and the n. All transgenic mice were compared with control mice at the same age. Results: Cx50KO and Cx50KI46 mice developed smaller lenses compared with control mice. The lens thickness, volume, and surface radii of curvatures all increased with age but were limited to the size of the lenses. Cx50KO lenses exhibited higher lens power than Cx50KI46 lenses at all ages, and this was correlated with significantly lower water content in these lenses, which was probably modulated by the gap junction coupling. The refractive power tended to a steady state with age, similar to the control mice. Conclusions: The modification of Cx50 gap junctions significantly impacted lens growth and physiological optics as the mouse aged. The lenses showed delayed development growth, and altered optics governed by different lens physiology. This research provides new insights into how gap junctions regulate the development of the lens's physiological optics.


Assuntos
Conexinas , Cristalino , Camundongos Transgênicos , Animais , Cristalino/metabolismo , Conexinas/metabolismo , Conexinas/genética , Camundongos , Imageamento por Ressonância Magnética , Envelhecimento/fisiologia , Refração Ocular/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Junções Comunicantes/fisiologia , Junções Comunicantes/metabolismo
9.
Biomater Adv ; 163: 213939, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38954876

RESUMO

The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.


Assuntos
Osteoblastos , Osteócitos , Titânio , Titânio/farmacologia , Titânio/química , Animais , Osteócitos/metabolismo , Osteócitos/fisiologia , Osteócitos/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Linhagem Celular , Propriedades de Superfície , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Junções Comunicantes/metabolismo , Nanoestruturas
10.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38969506

RESUMO

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.


Assuntos
Sinapses Elétricas , Síndrome do Cromossomo X Frágil , Neurônios Motores , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/genética , Sinapses Elétricas/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neurônios Motores/fisiologia , Modelos Animais de Doenças , Conexinas/genética , Conexinas/metabolismo , Animais Geneticamente Modificados , Hipercinese/fisiopatologia , Interneurônios/fisiologia , Interneurônios/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
11.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849015

RESUMO

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Assuntos
Apoptose , Neoplasias Ósseas , Carcinoma de Células Renais , Proteínas da Matriz Extracelular , Junções Comunicantes , Neoplasias Renais , Osteócitos , Osteócitos/metabolismo , Osteócitos/patologia , Humanos , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/secundário , Apoptose/efeitos dos fármacos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Progressão da Doença , Conexina 43/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Osteólise/patologia , Osteólise/metabolismo , Feminino
12.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928300

RESUMO

Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.


Assuntos
Cálcio , Conexinas , Junções Comunicantes , Conexinas/metabolismo , Conexinas/genética , Humanos , Cálcio/metabolismo , Animais , Junções Comunicantes/metabolismo , Sinalização do Cálcio
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927995

RESUMO

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Junções Comunicantes , Células-Tronco Neurais , Neuroglia , Octanóis , Animais , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos , Octanóis/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/citologia , Células Cultivadas , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Conexina 43/metabolismo , Ratos Wistar , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/citologia , Animais Recém-Nascidos , Humanos
14.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849852

RESUMO

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Assuntos
Fibroblastos Associados a Câncer , Comunicação Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Animais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Análise Espaço-Temporal , Junções Íntimas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
16.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892259

RESUMO

Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.


Assuntos
Criopreservação , Células do Cúmulo , Junções Comunicantes , Oócitos , Animais , Oócitos/metabolismo , Oócitos/citologia , Criopreservação/métodos , Junções Comunicantes/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Bovinos , Feminino , Conexina 43/metabolismo , Conexina 43/genética , Conexinas/metabolismo , Conexinas/genética , Vitrificação , Técnicas de Cocultura/métodos , Sobrevivência Celular , Técnicas de Maturação in Vitro de Oócitos/métodos
17.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892334

RESUMO

Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.


Assuntos
Conexinas , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Conexinas/metabolismo , Conexinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Regulação da Expressão Gênica , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Junções Comunicantes/metabolismo , Junções Comunicantes/genética , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia
18.
Elife ; 132024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829031

RESUMO

Connexins allow intercellular communication by forming gap junction channels (GJCs) between juxtaposed cells. Connexin26 (Cx26) can be regulated directly by CO2. This is proposed to be mediated through carbamylation of K125. We show that mutating K125 to glutamate, mimicking the negative charge of carbamylation, causes Cx26 GJCs to be constitutively closed. Through cryo-EM we observe that the K125E mutation pushes a conformational equilibrium towards the channel having a constricted pore entrance, similar to effects seen on raising the partial pressure of CO2. In previous structures of connexins, the cytoplasmic loop, important in regulation and where K125 is located, is disordered. Through further cryo-EM studies we trap distinct states of Cx26 and observe density for the cytoplasmic loop. The interplay between the position of this loop, the conformations of the transmembrane helices and the position of the N-terminal helix, which controls the aperture to the pore, provides a mechanism for regulation.


Assuntos
Dióxido de Carbono , Conexina 26 , Microscopia Crioeletrônica , Conformação Proteica , Humanos , Dióxido de Carbono/metabolismo , Conexina 26/metabolismo , Conexina 26/genética , Conexinas/metabolismo , Conexinas/genética , Conexinas/química , Junções Comunicantes/metabolismo , Mutação
19.
Exp Eye Res ; 245: 109957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843983

RESUMO

Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 µM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.


Assuntos
Permeabilidade da Membrana Celular , Junções Comunicantes , Peróxido de Hidrogênio , Pressão Hidrostática , Cristalino , Camundongos Endogâmicos C57BL , Animais , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Cristalino/metabolismo , Cristalino/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Catarata/metabolismo , Estresse Oxidativo , Oxidantes/farmacologia , Oxidantes/toxicidade
20.
Curr Biol ; 34(14): 3116-3132.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38936363

RESUMO

Bioelectric signaling, intercellular communication facilitated by membrane potential and electrochemical coupling, is emerging as a key regulator of animal development. Gap junction (GJ) channels can mediate bioelectric signaling by creating a fast, direct pathway between cells for the movement of ions and other small molecules. In vertebrates, GJ channels are formed by a highly conserved transmembrane protein family called the connexins. The connexin gene family is large and complex, creating challenges in identifying specific connexins that create channels within developing and mature tissues. Using the embryonic zebrafish neuromuscular system as a model, we identify a connexin conserved across vertebrate lineages, gjd4, which encodes the Cx46.8 protein, that mediates bioelectric signaling required for slow muscle development and function. Through mutant analysis and in vivo imaging, we show that gjd4/Cx46.8 creates GJ channels specifically in developing slow muscle cells. Using genetics, pharmacology, and calcium imaging, we find that spinal-cord-generated neural activity is transmitted to developing slow muscle cells, and synchronized activity spreads via gjd4/Cx46.8 GJ channels. Finally, we show that bioelectrical signal propagation within the developing neuromuscular system is required for appropriate myofiber organization and that disruption leads to defects in behavior. Our work reveals a molecular basis for GJ communication among developing muscle cells and reveals how perturbations to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Moreover, this work underscores a critical motif of signal propagation between organ systems and highlights the pivotal role of GJ communication in coordinating bioelectric signaling during development.


Assuntos
Conexinas , Junções Comunicantes , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Junções Comunicantes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Conexinas/metabolismo , Conexinas/genética , Desenvolvimento Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA