Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062530

RESUMO

Dairy products are an important source of protein and other nutrients in the Mediterranean diet. In these countries, the most common sources of milk for producing dairy products are cow, goat, sheep, and buffalo. Andalusia is traditionally the largest producer of goat milk in Spain. Kefir is a fermented product made from bacteria and yeasts and has health benefits beyond its nutritional properties. There is a lack of knowledge about the molecular mechanisms and metabolites that bring about these benefits. In this work, the combination of analytical techniques (GC-FID, UHPLC-MS-QToF, GC-QqQ-MS, and GC-ToF-MS) resulted in the detection of 105 metabolites in kefir produced with goat milk from two different thermal treatments (raw and pasteurized) fermented at four time points (12, 24, 36, and 48 h, using 0 h as the control). Of these, 27 metabolites differed between kefir produced with raw and pasteurized milk. These changes could possibly be caused by the effect of pasteurization on the microbial population in the starting milk. Some interesting molecules were identified, such as shikimic acid, dehydroabietic acid, GABA, and tyramine, which could be related to antibacterial properties, strengthening of the immune system, and arterial pressure. Moreover, a viability assay of the NIRS technique was performed to evaluate its use in monitoring the fermentation and classification of samples, which resulted in a 90% accuracy in comparison to correctly classified samples according to their fermentation time. This study represents the most comprehensive metabolomic analysis of goat milk kefir so far, revealing the intricate changes in metabolites during fermentation and the impact of milk treatment.


Assuntos
Fermentação , Cabras , Kefir , Metabolômica , Leite , Animais , Kefir/microbiologia , Metabolômica/métodos , Leite/metabolismo , Leite/química , Leite/microbiologia , Temperatura Alta , Cromatografia Líquida de Alta Pressão
2.
Compr Rev Food Sci Food Saf ; 23(4): e13364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847746

RESUMO

Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.


Assuntos
Kefir , Simbiose , Kefir/microbiologia , Simbiose/fisiologia , Microbiota/fisiologia , Fermentação , Microbiologia de Alimentos
3.
Food Funct ; 15(12): 6717-6730, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38833212

RESUMO

Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The ß-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high ß-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.


Assuntos
Anti-Inflamatórios , Colite Ulcerativa , Microbioma Gastrointestinal , Kluyveromyces , Camundongos Endogâmicos BALB C , Probióticos , Sulfassalazina , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colite Ulcerativa/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Sulfassalazina/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Probióticos/farmacologia , Masculino , Kefir/microbiologia , Sulfato de Dextrana/efeitos adversos , Humanos , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Feminino
4.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893583

RESUMO

The growing interest in fermented dairy products is due to their health-promoting properties. The use of milk kefir grains as a starter culture made it possible to obtain a product with a better nutritional and biological profile depending on the type of milk. Cow, buffalo, camel, donkey, goat, and sheep milk kefirs were prepared, and the changes in sugar, protein, and phenol content, fatty acid composition, including conjugated linoleic acids (CLAs), as well as antioxidant activity, determined by ABTS and FRAP assays, were evaluated and compared. The protein content of cow, buffalo, donkey, and sheep milk increased after 24 h of fermentation. The fatty acid profile showed a better concentration of saturated and unsaturated lipids in all fermented milks, except buffalo milk. The highest content of beneficial fatty acids, such as oleic, linoleic, and C18:2 conjugated linoleic acid, was found in the cow and sheep samples. All samples showed a better antioxidant capacity, goat milk having the highest value, with no correlation to the total phenolic content, which was highest in the buffalo sample (260.40 ± 5.50 µg GAE/mL). These findings suggested that microorganisms living symbiotically in kefir grains utilize nutrients from different types of milk with varying efficiency.


Assuntos
Antioxidantes , Búfalos , Ácidos Graxos , Cabras , Kefir , Leite , Valor Nutritivo , Animais , Kefir/microbiologia , Kefir/análise , Leite/química , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/farmacologia , Ácidos Graxos/análise , Bovinos , Ovinos , Fermentação , Fenóis/análise , Fenóis/química , Camelus , Equidae
5.
Turk J Med Sci ; 54(1): 357-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812644

RESUMO

Background/aim: Scaling and root planing remain inadequate in periodontitis treatment caused by dysbiotic microbial dental plaque. The aim of this clinical trial is to evaluate the effects of probiotics and kefir consumption in initial periodontal therapy (IPT) on oral microbiota composition and treatment outcomes in patients with periodontitis. Materials and methods: The study was carried out in the Gazi University Department of Periodontology, including a sample size of 36 individuals and utilizing a randomized controlled design. Thirty-six patients with periodontitis were randomly allocated to three groups: one receiving probiotic treatment, another receiving kefir, and a third serving as the control group. Obtaining subgingival microbial samples, we recorded plaque, gingival index, bleeding on probing, periodontal pocket depth, and clinical attachment level (periodontal clinical indices) and then performed IPT. For 14 days, patients took either probiotics, kefir, or no supplements. Data for the first and third months were collected using periodontal clinical indices. DNA sequencing was performed to detect Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola in subgingival plaque samples collected at baseline and three months. Results: Significant differences were observed regarding periodontal clinical indices among groups in the intragroup comparisons. Moreover, levels of Tannerella forsythia were significantly decreased in all groups. Conclusion: Kefir can be administered in addition to IPT, providing results similar to those observed with probiotics.


Assuntos
Disbiose , Probióticos , Humanos , Probióticos/uso terapêutico , Masculino , Disbiose/terapia , Feminino , Adulto , Pessoa de Meia-Idade , Porphyromonas gingivalis/isolamento & purificação , Kefir/microbiologia , Tannerella forsythia/isolamento & purificação , Periodontite/microbiologia , Periodontite/terapia , Periodontite/prevenção & controle , Treponema denticola/isolamento & purificação , Índice Periodontal , Resultado do Tratamento , Doenças Periodontais/microbiologia , Doenças Periodontais/prevenção & controle , Doenças Periodontais/terapia
6.
Food Res Int ; 186: 114305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729687

RESUMO

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Assuntos
Equidae , Fermentação , Cabras , Kefir , Leite , Animais , Kefir/microbiologia , Bovinos , Leite/microbiologia , Leite/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , Camelus , Microbiologia de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análise
7.
Food Chem ; 453: 139659, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776792

RESUMO

There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.


Assuntos
Antioxidantes , Fermentação , Kefir , Lycium , Polissacarídeos , Lycium/química , Lycium/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Kefir/microbiologia , Kefir/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Peso Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Medicamentos de Ervas Chinesas
8.
Microb Pathog ; 190: 106641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588925

RESUMO

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Assuntos
Adjuvantes Imunológicos , Antioxidantes , Bivalves , Kefir , Probióticos , Superóxido Dismutase , Vibrio alginolyticus , Animais , Probióticos/farmacologia , Bivalves/química , Bivalves/microbiologia , Antioxidantes/metabolismo , Kefir/microbiologia , Superóxido Dismutase/metabolismo , Spirulina/química , Malondialdeído/metabolismo , Malondialdeído/análise , Ração Animal , Monofenol Mono-Oxigenase/metabolismo , Suplementos Nutricionais , Fosfatase Alcalina/metabolismo , Muramidase/metabolismo , Vibrioses/prevenção & controle
9.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682181

RESUMO

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Assuntos
Genoma Bacteriano , Kefir , Filogenia , Probióticos , Tibet , Kefir/microbiologia , Farmacorresistência Bacteriana/genética , Lactobacillus plantarum/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Sistemas CRISPR-Cas
10.
Food Funct ; 15(9): 5026-5040, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650522

RESUMO

This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.


Assuntos
Antibacterianos , Fermentação , Kefir , Leite , Kefir/microbiologia , Leite/microbiologia , Antibacterianos/farmacologia , Animais , Tibet , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacteriocinas/farmacologia
11.
World J Microbiol Biotechnol ; 40(4): 118, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429465

RESUMO

This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.


Assuntos
Chenopodium quinoa , Kefir , Lactobacillales , Kefir/análise , Kefir/microbiologia , Verduras , Leveduras , Extratos Vegetais , Fermentação
12.
Biomed Pharmacother ; 174: 116431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522238

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening lung disease with high mortality rates. The limited availability of effective drugs for IPF treatment, coupled with concerns regarding adverse effects and restricted responsiveness, underscores the need for alternative approaches. Kefir peptides (KPs) have demonstrated antioxidative, anti-inflammatory, and antifibrotic properties, along with the capability to modulate gut microbiota. This study aims to investigate the impact of KPs on bleomycin-induced pulmonary fibrosis. METHODS: Mice were treated with KPs for four days, followed by intratracheal injection of bleomycin for 21 days. Comprehensive assessments included pulmonary functional tests, micro-computed tomography (µ-CT), in vivo image analysis using MMPsense750, evaluation of inflammation- and fibrosis-related gene expression in lung tissue, and histopathological examinations. Furthermore, a detailed investigation of the gut microbiota community was performed using full-length 16 S rRNA sequencing in control mice, bleomycin-induced fibrotic mice, and KPs-pretreated fibrotic mice. RESULTS: In KPs-pretreated bleomycin-induced lung fibrotic mice, notable outcomes included the absence of significant bodyweight loss, enhanced pulmonary functions, restored lung tissue architecture, and diminished thickening of inter-alveolar septa, as elucidated by morphological and histopathological analyses. Concurrently, a reduction in the expression levels of oxidative biomarkers, inflammatory factors, and fibrotic indicators was observed. Moreover, 16 S rRNA sequencing demonstrated that KPs pretreatment induced alterations in the relative abundances of gut microbiota, notably affecting Barnesiella_intestinihominis, Kineothrix_alysoides, and Clostridium_viride. CONCLUSIONS: Kefir peptides exerted preventive effects, protecting mice against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. These effects are likely linked to modifications in the gut microbiota community. The findings highlight the therapeutic potential of KPs in mitigating pulmonary fibrosis and advocate for additional exploration in clinical settings.


Assuntos
Bleomicina , Microbioma Gastrointestinal , Kefir , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fibrose Pulmonar , Animais , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Kefir/microbiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/tratamento farmacológico , Inflamação/patologia , Masculino , Peptídeos/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
13.
PLoS One ; 19(2): e0297900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324577

RESUMO

Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.


Assuntos
Kefir , Lactobacillales , Probióticos , Animais , Ratos , Kefir/microbiologia , RNA Ribossômico 16S/genética , Escherichia coli/genética , Staphylococcus aureus/genética , Lactobacillaceae/genética , Probióticos/química , Lactobacillales/genética
14.
J Dairy Sci ; 107(7): 4259-4276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369119

RESUMO

Four dairy foods processing by-products (acid whey permeate [AWP], buttermilk [BM], sweet whey permeate [SWP], and sweet whey permeate with added milk fat globule ingredient [SWP+MFGM]) were fermented for 4 wk and compared with traditional kefir milks for production of novel kefir-like dairy products. Sweet whey permeates and SWP supplemented with 1.5% milk fat globule membrane (MFGM) proved to be the most viable by-products for kefir grain fermentation, exhibiting diverse abundance of traditional kefir microorganisms and positive indicators of bioactive properties. Grain viability was assessed with shotgun metagenomics, texture profile analysis, live cell counts, and scanning electron microscopy. Assessed bioactivities of the kefir-like products included antibacterial, antioxidant, potential anticancerogenic properties, and membrane barrier effects on human colorectal adenocarcinoma Caco-2 cells. All kefir grains were most abundant in Lactobacillus kefiranofaciens when analyzed with shotgun metagenomics. When analyzed with live cell counts on selective media, AWP kefir-like product had no countable Lactococcus spp., indicating suboptimal conditions for kefir grain microbiota survival and application for fermented dairy starter culture bacterium. Live cell counts were affirmed with kefir grain surface scanning electron microscopy images. The SWP treatment had the most adhesive kefir grain surface, and SWP+MFGM had the largest exopolysaccharide yield from grain extraction. All kefir and kefir-like products were able to achieve a 6-log reduction against Listeria innocua and Escherichia coli. Traditional milk kefirs had the highest antioxidant capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS) assay. The AWP formulation had a significantly higher DPPH antioxidant activity compared with the other kefir and kefir-like products, and SWP had the lowest Trolox equivalence concentration in the ABTS assay. Sweet whey and supplemented milk fat sweet whey had upregulation of Cldn-1 and Ocln-1 gene expression, which correspond with a significant increase in transepithelial electrical resistance.


Assuntos
Fermentação , Kefir , Kefir/microbiologia , Animais , Soro do Leite/química , Microbiota , Humanos , Células CACO-2 , Antioxidantes/farmacologia
15.
Rev Argent Microbiol ; 56(2): 191-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272730

RESUMO

Water kefir is a sparkling, slightly acidic fermented beverage made from sugar, water, and water kefir grains, which are a mixture of yeast and bacteria. These grains produce a variety of fermentation compounds such as lactic acid, acetaldehyde, acetoin, ethanol and carbon dioxide. In this study, a high-throughput sequencing technique was used to characterize the bacterial composition of the original water kefir from which potential probiotics were obtained. We studied the bacterial diversity of both water kefir grains and beverages. DNA was extracted from three replicate samples of both grains and beverages using the Powerlyzer Microbial Kit. The hypervariable V1-V2 region of the bacterial 16S ribosomal RNA gene was amplified to prepare six DNA libraries. Between 1.4M and 2.4M base-pairs were sequenced for the library. In total, 28721971 raw reads were obtained from all the samples. Estimated species richness was higher in kefir beverage samples compared to grain samples. Moreover, a higher level of microbial alpha diversity was observed in the beverage samples. Particularly, the predominant bacteria in beverages were Anaerocolumna and Ralstonia, while in grains Liquorilactobacillus dominated, with lower levels of Leuconostoc and Oenococcus. Although the bacterial diversity in kefir grains was low because only three genera were the most represented, all of them are LAB bacteria with the potential to serve as probiotics in the artificial feeding of bees.


Assuntos
Bactérias , Kefir , Metagenômica , Probióticos , RNA Ribossômico 16S , Animais , Abelhas/microbiologia , Kefir/microbiologia , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , DNA Bacteriano/análise , Biodiversidade , DNA Ribossômico/genética , Ração Animal/microbiologia
16.
Food Res Int ; 175: 113716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128984

RESUMO

Although milk kefir and water kefir have different physical, chemical and microbiological characteristics, several microbial species that make up kefir stand out with probiotic functions. Furthermore, because it is suitable for a variety of substrates, kefir and the species of probiotic microorganisms that make it up are seen as a promising alternative in the development of probiotic and health-promoting foods. The aim of this study was to carry out a bibliometric analysis of water kefir and milk kefir in probiotic foods and to critically analyze recent applications and prospects. Using the Scopus database, 202 documents published between 2013 and 2022 were identified and submitted to bibliometric analysis using the VOSviewer software. Regarding recent applications, 107 documents published between 2021 and June 2023 were identified. It was observed that, in the literature consulted, no study used bibliometric analysis to evaluate the use of water kefir and milk kefir in probiotic foods. Due to the presence of probiotic species, kefir has been listed as an alternative for the production of new probiotic food matrices that are beneficial to health. Recent applications show kefir's potential in the development of probiotic products based on fruit and fruit juice, whey beverages, fermented milks and derivatives, and alcoholic beverages such as beers.


Assuntos
Kefir , Probióticos , Animais , Kefir/microbiologia , Leite/química , Fermentação , Bibliometria
17.
Nutrients ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004201

RESUMO

This study presents results based on differences in the antioxidant activity and lactic acid bacteria counts in different parts of the digestive tract following simulated gastrointestinal digestion of kefir samples. Statistically significant differences were observed in Lactobacillus counts in different kefir types including industrial (IK), starter culture (SCK), and kefir grains (KG). These differences were observed between the initial and second min in the mouth region (T = 3.968; p < 0.05); and between the initial, 60th, and 120th min in the stomach region (R = 11.146; p < 0.05). Additionally, a statistically significant difference was noted in the initial Lactobacillus levels among the IK, SCK, and KG in the stomach region (H = 7.205; p < 0.05). Also, significant differences were identified between the Lactococcus counts of IK across 0, 60, and 120 min in the stomach region (R = 10.236; p < 0.05). Notably, a statistically significant difference was noted in the Lactococcus levels in the KG between the initial and second min in the mouth region (T = 3.101; p < 0.05) and between 0, 60, and 120 min in the stomach region (R = 25.771; p < 0.001). These findings highlight the differences between the physicochemical characteristics of different kefir types. A decrease in lactic acid bacteria counts in kefir samples was observed throughout the dynamic in vitro gastrointestinal tract to reveal the significance of the digestive process when determining probiotic product capacity.


Assuntos
Kefir , Lactobacillales , Probióticos , Kefir/microbiologia , Lactobacillus , Trato Gastrointestinal , Fermentação
18.
Food Res Int ; 173(Pt 1): 113298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803610

RESUMO

Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.


Assuntos
Kefir , Lactobacillales , Humanos , Bactérias , Cromatografia Líquida , Kefir/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia , Espectrometria de Massas em Tandem
19.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389589

RESUMO

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Assuntos
Kefir , Microbiota , Camundongos , Animais , Kefir/microbiologia , Leite/metabolismo , Antioxidantes , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Encéfalo/metabolismo
20.
J Food Sci ; 88(7): 2933-2949, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37222548

RESUMO

The microbiota composition of kefir grain and milk kefir was assessed via a metagenomic approach. Significant microorganisms were isolated and identified using molecular methods. A safety assessment was conducted based on antibiotic susceptibility and blood hemolysis. Probiotic traits such as resistance to gastric tract conditions, surface characteristics, adhesion to intestinal cells, and antibacterial activity were also assessed. Metagenomic analysis revealed that kefir grains are a more stable community with clear dominant species as compared to milk kefir. Lactobacillus kefiranofaciens BDGO-A1, Lactobacillus helveticus BDGO-AK2, and Lactobacillu kefiri strains showed tolerance to acidic pH and the presence of bile salts, adhesion capability to Caco-2 cells, in vitro antibacterial activity, and the production of antibacterial proteins. In the metagenomic analysis, contigs associated with these species showed the presence of genes involved in exporting polyketide antibiotics and bacteriocin production. To fully exploit the potential probiotic properties of these microorganisms to help human health, further investigation is necessary to elucidate the mechanisms behind the biological activity and the genotypic characteristics of the isolated strains.


Assuntos
Produtos Fermentados do Leite , Kefir , Probióticos , Humanos , Animais , Kefir/microbiologia , Células CACO-2 , Leite/microbiologia , Antibacterianos/farmacologia , Produtos Fermentados do Leite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA