Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem Biophys Res Commun ; 504(1): 40-45, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30173889

RESUMO

D-Serine deaminase (DSD) degrades D-Ser to pyruvate and ammonia. Uropathogenic bacteria survive in the toxic D-Ser containing mammalian urine because of DSD activity. The crystal structure of the apo form of Salmonella typhimurium DSD (StDSD) has been reported earlier. In the present work, we have investigated the role of two active site residues, Thr166 and Asp236 by site directed mutagenesis (T166A and D236L). The enzyme activity is lost upon mutation of these residues. The 2.7 Šresolution crystal structure of T166A DSD with bound PLP reported here represents the first structure of the holo form of StDSD. PLP binding induces small changes in the relative dispositions of the minor and major domains of the protein and this inter-domain movement becomes substantial upon interaction with the substrate. The conformational changes bring Thr166 to a position at the active site favorable for the degradation of D-Ser. Examination of the different forms of the enzyme and comparison with structures of homologous enzymes suggests that Thr166 is the most probable base abstracting proton from the Cα atom of the substrate and Asp236 is crucial for binding of the cofactor.


Assuntos
Ácido Aspártico/química , L-Serina Desidratase/química , Salmonella typhimurium/enzimologia , Treonina/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , L-Serina Desidratase/genética , Modelos Moleculares , Mutação , Fosfato de Piridoxal/química
2.
J Antibiot (Tokyo) ; 69(7): 486-93, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27072285

RESUMO

Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.


Assuntos
Liases Intramoleculares/química , Terpenos/metabolismo , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Biocatálise , Ciclização , Difosfatos/química , Difosfatos/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Liases Intramoleculares/metabolismo , Isomerases/química , Isomerases/metabolismo , L-Serina Desidratase/química , L-Serina Desidratase/metabolismo , Fosfatos/química
3.
Arch Biochem Biophys ; 596: 108-17, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26971469

RESUMO

The crystal structure of the Type 2 l-serine dehydratase from Legionella pneumophila (lpLSD), revealed a "tail-in-mouth" configuration where the C-terminal residue acts as an intrinsic competitive inhibitor. This pre-catalytic structure undergoes an activation step prior to catalytic turnover. Mutagenic analysis of residues at or near the active site cleft is consistent with stabilization of substrate binding by many of the same residues that interact with the C-terminal cysteine and highlight the critical role of certain tail residues in activity. pH-rate profiles show that a residue with pK of 5.9 must be deprotonated and a residue with a pK of 8.5 must be protonated for activity. This supports an earlier suggestion that His 61 is the likely catalytic base. An additional residue with a pK of 8.5-9 increases cooperativity when it is deprotonated. This investigation also demonstrates that the Fe-S dehydratases convert the enamine/imine intermediates of the catalytic reaction to products on the enzyme prior to release. This is in contrast to pyridoxyl 5' phosphate based dehydratases that release an enamine/imine intermediate into solution, which then hydrolyzes to produce the ketoamine product.


Assuntos
Proteínas de Bactérias/química , L-Serina Desidratase/química , Legionella pneumophila/enzimologia , Mutagênese , Proteínas de Bactérias/genética , Catálise , Ativação Enzimática/genética , Concentração de Íons de Hidrogênio , L-Serina Desidratase/genética , Legionella pneumophila/genética
4.
Biochem Biophys Res Commun ; 466(3): 431-7, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26367174

RESUMO

L-serine ammonia-lyase, as a member of the ß-family of pyridoxal-5'-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic ß-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/ß structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0-9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of ß-elimination enzymes and will provide a basis for further enzyme engineering.


Assuntos
Proteínas Fúngicas/química , L-Serina Desidratase/química , Rhizomucor/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , L-Serina Desidratase/genética , L-Serina Desidratase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizomucor/genética , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
5.
Biochemistry ; 54(34): 5322-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26266572

RESUMO

The type 2 L-serine dehydratase from Legionella pneumophila (lpLSD) contains a [4Fe-4S](2+) cluster that acts as a Lewis acid to extract the hydroxyl group of L-serine during the dehydration reaction. Surprisingly, the crystal structure shows that all four of the iron atoms in the cluster are coordinated with protein cysteinyl residues and that the cluster is buried and not exposed to solvent. If the crystal structure of lpLSD accurately reflects the structure in solution, then substantial rearrangement at the active site is necessary for the substrate to enter. Furthermore, repair of the oxidized protein when the cluster has degraded would presumably entail exposure of the buried cysteine ligands. Thus, the conformation required for the substrate to enter may be similar to those required for a new cluster to enter the active site. To address this, hydrogen-deuterium exchange combined with mass spectrometry (HDX MS) was used to probe the conformational changes that occur upon oxidative degradation of the Fe-S cluster. The regions that show the most significant differential HDX are adjacent to the cluster location in the holoenzyme or connect regions that are adjacent to the cluster. The observed decrease in flexibility upon cluster binding provides direct evidence that the "tail-in-mouth" conformation observed in the crystal structure also occurs in solution and that the C-terminal peptide is coordinated to the [4Fe-4S] cluster in a precatalytic conformation. This observation is consistent with the requirement of an activation step prior to catalysis and the unusually high level of resistance to oxygen-induced cluster degradation. Furthermore, peptide mapping of the apo form under nonreducing conditions revealed the formation of disulfide bonds between C396 and C485 and possibly between C343 and C385. These observations provide a picture of how the cluster loci are stabilized and poised to receive the cluster in the apo form and the requirement for a reduction step during cluster formation.


Assuntos
Proteínas de Bactérias/química , L-Serina Desidratase/química , Legionella pneumophila/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Medição da Troca de Deutério , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Proteínas Ferro-Enxofre/química , L-Serina Desidratase/genética , L-Serina Desidratase/metabolismo , Legionella pneumophila/genética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mapeamento de Peptídeos , Ligação Proteica , Conformação Proteica
6.
J Pharm Biomed Anal ; 116: 34-9, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25617179

RESUMO

D-Serine is an endogenous coagonist for N-methyl-D-aspartate (NMDA) receptors and is involved in excitatory neurotransmission. Excessive receptor activation causes excitotoxicity, leading to various acute and chronic neurological disorders. Decrease in D-serine content may provide a therapeutic strategy for the treatment of the neurological disorders in which overstimulation of NMDA receptors plays a pathological role. Saccharomyces cerevisiaed-serine dehydratase (Dsd1p), which acts dominantly on D-serine, may be a useful D-serine reducing agent. We conjugated a linear 5-kDa polyethylene glycol (PEG) to Dsd1p (PEG-Dsd1p) and examined the effects of PEG-conjugation on its biochemical and pharmacokinetic properties. PEG-Dsd1p retained activity, specificity, and stability of the enzyme. The PEG modification extended the serum half-life of Dsd1p in mice 6-fold, from 3.8h to 22.4h. PEG-Dsd1p was much less immunogenic compared to the unmodified enzyme. Intraperitoneal administration of PEG-Dsd1p was effective in decreasing the D-serine content in the mouse hippocampus. These findings suggest that PEG-Dsd1p may be a novel tool for lowering D-serine levels in vivo.


Assuntos
L-Serina Desidratase/metabolismo , Polietilenoglicóis/metabolismo , Substâncias Redutoras/metabolismo , Serina/metabolismo , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , L-Serina Desidratase/química , L-Serina Desidratase/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Substâncias Redutoras/química , Serina/química
7.
Biochemistry ; 53(48): 7615-24, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25380533

RESUMO

Here we report the first complete structure of a bacterial Fe-S l-serine dehydratase determined to 2.25 Å resolution. The structure is of the type 2 l-serine dehydratase from Legionella pneumophila that consists of a single polypeptide chain containing a catalytic α domain and a ß domain that is structurally homologous to the "allosteric substrate binding" or ASB domain of d-3-phosphoglycerate dehydrogenase from Mycobacterium tuberculosis. The enzyme exists as a dimer of identical subunits, with each subunit exhibiting a bilobal architecture. The [4Fe-4S](2+) cluster is bound by residues from the C-terminal α domain and is situated between this domain and the N-terminal ß domain. Remarkably, the model reveals that the C-terminal cysteine residue (Cys 458), which is conserved among the type 2 l-serine dehydratases, functions as a fourth ligand to the iron-sulfur cluster producing a "tail in mouth" configuration. The interaction of the sulfhydryl group of Cys 458 with the fourth iron of the cluster appears to mimic the position that the substrate would adopt prior to catalysis. A number of highly conserved or invariant residues found in the ß domain are clustered around the iron-sulfur center. Ser 16, Ser 17, Ser 18, and Thr 290 form hydrogen bonds with the carboxylate group of Cys 458 and the carbonyl oxygen of Glu 457, whereas His 19 and His 61 are poised to potentially act as the catalytic base required for proton extraction. Mutation of His 61 produces an inactive enzyme, whereas the H19A protein variant retains substantial activity, suggesting that His 61 serves as the catalytic base. His 124 and Asn 126, found in an HXN sequence, point toward the Fe-S cluster. Mutational studies are consistent with these residues either binding a serine molecule that serves as an activator or functioning as a potential trap for Cys 458 as it moves out of the active site prior to catalysis.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , L-Serina Desidratase/antagonistas & inibidores , L-Serina Desidratase/química , Legionella pneumophila/enzimologia , Sítio Alostérico/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Ligação Competitiva , Domínio Catalítico/genética , Cristalografia por Raios X , Cisteína/química , Cinética , L-Serina Desidratase/genética , Legionella pneumophila/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Eletricidade Estática
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 596-606, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531493

RESUMO

Numerous enzymes, such as the pyridoxal 5'-phosphate (PLP)-dependent enzymes, require cofactors for their activities. Using X-ray crystallography, structural snapshots of the L-serine dehydratase catalytic reaction of a bacterial PLP-dependent enzyme were determined. In the structures, the dihedral angle between the pyridine ring and the Schiff-base linkage of PLP varied from 18° to 52°. It is proposed that the organic cofactor PLP directly catalyzes reactions by active conformational changes, and the novel catalytic mechanism involving the PLP cofactor was confirmed by high-level quantum-mechanical calculations. The conformational change was essential for nucleophilic attack of the substrate on PLP, for concerted proton transfer from the substrate to the protein and for directing carbanion formation of the substrate. Over the whole catalytic cycle, the organic cofactor catalyzes a series of reactions, like the enzyme. The conformational change of the PLP cofactor in catalysis serves as a starting point for identifying the previously unknown catalytic roles of organic cofactors.


Assuntos
Proteínas de Bactérias/química , L-Serina Desidratase/química , Fosfato de Piridoxal/química , Xanthomonas/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Cinética , L-Serina Desidratase/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bases de Schiff , Especificidade por Substrato , Xanthomonas/enzimologia
9.
Arch Biochem Biophys ; 540(1-2): 62-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161940

RESUMO

Two new types of bacterial Fe-S L-serine dehydratases have been identified. These join two previously recognized enzyme types, for a total of four, that are distinguished on the basis of domain arrangement and amino acid sequence. A Type 3 enzyme from Amphibacillus xylanus (axLSD) and a Type 4 enzyme from Heliscomenobacter hydrossis (hhLSD) were cloned, expressed, purified, and characterized. Like the Type 1 enzyme from Bacillus subtilis (bsLSD), axLSD required a monovalent cation, preferably potassium, for activity. However, the hhLSD was without activity even after reconstitution of the iron-sulfur center by a process that successfully restored activity to oxygen-inactivated axLSD. This and other characteristics suggest that this Type 4 protein may be a pseudoenzyme. The oxygen sensitivity of axLSD was greater than other L-serine dehydratases so far studied and suggested that there may be significant conformational differences among the four types resulting in widely different solvent accessibility of the Fe-S clusters in these enzymes. The role of the ACT domain in these enzymes was explored by deleting it from bsLSD. Although there was an effect on the kinetic parameters, this domain was not responsible for the cation requirement nor did its removal have a significant effect on oxygen sensitivity.


Assuntos
Bacillaceae/enzimologia , Bacteroidetes/enzimologia , L-Serina Desidratase/química , L-Serina Desidratase/metabolismo , Sequência de Aminoácidos , Bacillaceae/genética , Bacteroidetes/genética , Cátions Monovalentes/farmacologia , Bases de Dados de Proteínas , Ativação Enzimática/efeitos dos fármacos , Cinética , L-Serina Desidratase/genética , L-Serina Desidratase/isolamento & purificação , Dados de Sequência Molecular , Oxigênio/farmacologia , Estrutura Terciária de Proteína , Especificidade da Espécie
10.
Protein Eng Des Sel ; 25(11): 741-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23112234

RESUMO

D-Serine is a co-agonist of N-methyl D-aspartate, a glutamate receptor, which is a major excitatory neurotransmitter receptor in the brain. Human serine racemase (hSR) and serine dehydratase (hSDH) are two important pyridoxal-5'-phosphate-dependent enzymes that synthesize and degrade D-serine, respectively. hSR and hSDH have significant sequence homology (28% identity) and are similar in their structural folds (root-mean-square deviation, 1.12 Å). Sequence alignment and structural comparison between hSR and hSDH reveal that S84 in hSR and A65 in hSDH play important roles in their respective enzyme activities. We surmise that exchange of these two amino acids by introducing S84A hSR and A65S hSDH mutants may result in switching their protein functions. To understand the modulating mechanism of the key residues, mutants S84A in hSR and A65S in hSDH were constructed to monitor the change of activities. The structure of A65S hSDH mutant was determined at 1.3 Å resolution (PDB 4H27), elucidating the role of this critical amino acid. Our study demonstrated S84A hSR mutant behaved like hSDH, whereas A65S hSDH mutant acquired an additional function of using D-serine as a substrate.


Assuntos
Substituição de Aminoácidos , L-Serina Desidratase/genética , L-Serina Desidratase/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , L-Serina Desidratase/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Engenharia de Proteínas , Racemases e Epimerases/química , Alinhamento de Sequência , Homologia de Sequência
11.
Biochemistry ; 51(35): 6961-7, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22891658

RESUMO

The L-serine dehydratase from Legionella pneumophila (lpLSD) has recently been shown to contain a domain (ß domain) that has a high degree of structural homology with the ASB domain of d-3-phosphoglycerate dehydrogenase (PGDH) from Mycobacterium tuberculosis. Furthermore, this domain has been shown by sequence homology to be present in all bacterial L-serine dehydratases that utilize an Fe-S catalytic center. In PGDH, L-serine binds to the ACT domain to inhibit catalytic activity. However, substrate must be bound to the ASB domain for serine to exert its effect. As such, the ASB domain acts as a codomain for the action of L-serine. Pre-steady-state kinetic analysis of L-serine binding to lpLSD demonstrates that L-serine binds to a second noncatalytic site and produces a conformational change in the enzyme. The rate of this conformational change is too slow for its participation in the catalytic cycle but rather occurs prior to catalysis to produce an activated form of the enzyme. That the conformational change must occur prior to catalysis is shown by a lag in the production of product that exhibits essentially the same rate constant as the conformational change. The second, noncatalytic site for L-serine is likely to be the ASB domain (ß domain) of lpLSD that functions in a manner similar to that in PGDH. A mechanism whose overall effect is to keep L-serine levels from accumulating to high levels while not completely depleting the L-serine pool in the bacterial cell is proposed.


Assuntos
L-Serina Desidratase/metabolismo , Legionella pneumophila/enzimologia , Sítios de Ligação , Simulação por Computador , Cinética , L-Serina Desidratase/química , Legionella pneumophila/química , Legionella pneumophila/metabolismo , Modelos Biológicos , Conformação Proteica , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Serina/metabolismo , Especificidade por Substrato
12.
Arch Biochem Biophys ; 515(1-2): 28-36, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21878319

RESUMO

A structural database search has revealed that the same fold found in the allosteric substrate binding (ASB) domain of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase (PGDH) is found in l-serine dehydratase from Legionella pneumophila. The M. tuberculosis PGDH ASB domain functions in the control of catalytic activity. Bacterial l-serine dehydratases are 4Fe-4S proteins that convert l-serine to pyruvate and ammonia. Sequence homology reveals two types depending on whether their α and ß domains are on the same (Type 2) or separate (Type 1) polypeptides. The α domains contain the catalytic iron-sulfur center while the ß domains do not yet have a described function, but the structural homology with PGDH suggests a regulatory role. Type 1 ß domains also contain additional sequence homologous to PGDH ACT domains. A continuous assay for l-serine dehydratase is used to demonstrate homotropic cooperativity, a broad pH range, and essential irreversibility. Product inhibition analysis reveals a Uni-Bi ordered mechanism with ammonia dissociating before pyruvate. l-Threonine is a poor substrate and l-cysteine and d-serine are competitive inhibitors with K(i) values that differ by almost 10-fold from those reported for Escherichia colil-serine dehydratase. Mutagenesis identifies the three cysteine residues at the active site that anchor the iron-sulfur complex.


Assuntos
L-Serina Desidratase/metabolismo , Legionella pneumophila/enzimologia , Mutagênicos , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Primers do DNA , Concentração de Íons de Hidrogênio , Cinética , L-Serina Desidratase/antagonistas & inibidores , L-Serina Desidratase/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
J Phys Chem B ; 112(41): 13091-100, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18811194

RESUMO

The catalytic mechanism of a pyridoxal 5'-phosphate-dependent enzyme, l-serine dehydratase, has been investigated using ab initio quantum mechanical/molecular mechanical (QM/MM) methods. New insights into the chemical steps have been obtained, including the chemical role of the substrate carboxyl group in the Schiff base formation step and a proton-relaying mechanism involving the phosphate of the cofactor in the beta-hydroxyl-leaving step. The latter step is of no barrier and follows sequentially after the elimination of the alpha-proton, leading to a single but sequential alpha, beta-elimination step. The rate-limiting transition state is specifically stabilized by the enzyme environment. At this transition state, charges are localized on the substrate carboxyl group, as well as on the amino group of Lys41. Specific interactions of the enzyme environment with these groups are able to lower the activation barrier significantly. One major difficulty associated with studies of complicated enzymatic reactions using ab initio QM/MM models is the appropriate choices of reaction coordinates. In this study, we have made use of efficient semiempirical models and pathway optimization techniques to overcome this difficulty.


Assuntos
L-Serina Desidratase/química , Fosfato de Piridoxal/química , Catálise , L-Serina Desidratase/metabolismo , Modelos Químicos , Conformação Molecular , Fosfato de Piridoxal/metabolismo , Teoria Quântica , Bases de Schiff/química , Relação Estrutura-Atividade , Termodinâmica
14.
Biochim Biophys Acta ; 1780(5): 809-18, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18342636

RESUMO

SDH (l-serine dehydratase, EC 4.3.1.17) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes dehydration of l-Ser/Thr to yield pyruvate/ketobutyrate and ammonia. A SDH isoform (cSDH) found in human cancer cell lines has relatively low catalytic activity in comparison with the liver enzyme (hSDH). The crystal structure of cSDH has been determined at 2.8 angstroms resolution. A PLP is covalently attached to K48 by Schiff-base linkage in the active site. The ring nitrogen of PLP is involved in a H-bonding with C309, but is apparently not protonated. Twenty-three amino residues that compose the active site surfaces were identified. The human and rat liver enzymes (hSDH and rSDH) have the same residues, while residues G72, A172, and S228 in cSDH are replaced with A66, S166, and A222, respectively, in hSDH. These residues in hSDH and cSDH were mutated to make complementary pairs of mutated enzymes, and their kinetic parameters were determined. C303 of hSDH and C309 of cSDH which are H-bonding partner of the ring nitrogen of PLP were mutated to alanine and their kinetic parameters were also determined. The crystal structures and the mutation data suggest that having a glycine at residue 72 of cSDH is the major reason for the reduction of catalytic activity of cSDH. Changing alanine to glycine at residue 72 increases the flexibility of the substrate binding-loop (71S(G/A)GN74), so that the bound substrate and PLP are not pushed deep into the active cleft. Consequently, the proton transfer rate from S(G) of C309 to N1 of the bound PLP is decreased, which determines the rate of catalytic reaction.


Assuntos
L-Serina Desidratase/química , Modelos Químicos , Mutagênese Sítio-Dirigida , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , L-Serina Desidratase/genética , L-Serina Desidratase/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/análogos & derivados , Serina/química , Serina/metabolismo , Eletricidade Estática
15.
Biochim Biophys Acta ; 1764(5): 961-71, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16580895

RESUMO

A cDNA clone similar to human serine dehydratase (SDH) is deposited in the GenBank/EMBL databases, but its structural and functional bases remain unknown. Despite the occurrence of mRNA, the expected protein level was found to be low in cultured cells. To learn about physicochemical properties of the protein, we expressed the cDNA in Escherichia coli, and compared the expressed protein with that of a hepatic SDH. The purified protein showed l-serine and l-threonine dehydratase activity, demonstrating to be an isoform of SDH. However, their Km and Vmax constants were different in a range of two-order. Removal of Pro128 from the hepatic SDH consisting of 328 residues, which is missing in the corresponding position of the isoform consisting of 329 residues, significantly changed the Michaelis constants and Kd value for pyridoxal 5'-phosphate, whereas addition of a proline residue to the isoform was without effect. These findings suggest the difference in the structures of the active sites of the two enzymes. Another striking feature was that the expressed level of the isoform in E. coli was 7-fold lower than that of the hepatic SDH. Substitution of Val for Leu287 in the isoform dramatically increased the protein level. The high yield of the mutated isoform was also confirmed by the in vitro transcription and translation experiment. The poor expression of the isoform could be explained by the more stable secondary structure of the mRNA than that of the hepatic SDH mRNA. The present findings may provide a clue as to why the protein level in cultured cells is low.


Assuntos
L-Serina Desidratase/química , L-Serina Desidratase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , L-Serina Desidratase/genética , Neoplasias Pulmonares/enzimologia , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Protein Sci ; 14(3): 791-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15689518

RESUMO

L-serine dehydratase (SDH), a member of the beta-family of pyridoxal phosphate-dependent (PLP) enzymes, catalyzes the deamination of L-serine and L-threonine to yield pyruvate or 2-oxobutyrate. The crystal structure of L-serine dehydratase from human liver (hSDH) has been solved at 2.5 A-resolution by molecular replacement. The structure is a homodimer and reveals a fold typical for beta-family PLP-dependent enzymes. Each monomer serves as an active unit and is subdivided into two distinct domains: a small domain and a PLP-binding domain that covalently anchors the cofactor. Both domains show the typical open alpha/beta architecture of PLP enzymes. Comparison with the rSDH-(PLP-OMS) holo-enzyme reveals a large structural difference in active sites caused by the artifical O-methylserine. Furthermore, the activity of hSDH-PLP was assayed and it proved to show catalytic activity. That suggests that the structure of hSDH-PLP is the first structure of the active natural holo-SDH.


Assuntos
L-Serina Desidratase/química , Fígado/enzimologia , Fosfato de Piridoxal/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Dimerização , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , L-Serina Desidratase/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Água/metabolismo
17.
Int J Biochem Cell Biol ; 37(3): 574-89, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15618015

RESUMO

In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from MetSTART-Met2-Ser3- and the rest from Ser3-, whereas the N-terminus of rat enzyme begins from the second codon of MetSTART-Ala2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.


Assuntos
Imuno-Histoquímica , L-Serina Desidratase/química , L-Serina Desidratase/metabolismo , Fígado/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Humanos , Cinética , L-Serina Desidratase/análise , L-Serina Desidratase/efeitos dos fármacos , L-Serina Desidratase/genética , L-Serina Desidratase/isolamento & purificação , Masculino , Dados de Sequência Molecular , Peptídeo Hidrolases/farmacologia , Proteínas/análise , Ratos , Ratos Wistar , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria , Tripsina/farmacologia
18.
J Biol Chem ; 279(31): 32418-25, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15155761

RESUMO

L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. Mössbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical Mössbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster.


Assuntos
Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/química , L-Serina Desidratase/química , Ligação Competitiva , Catálise , Cromatografia , Ditionita/química , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/química , Cinética , Magnetismo , Modelos Químicos , Peptídeos/química , Serina/química , Transdução de Sinais , Espectrofotometria , Espectroscopia de Mossbauer , Sulfetos/química , Termodinâmica , Fatores de Tempo , Raios Ultravioleta
19.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 12): 2297-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14646100

RESUMO

L-Serine dehydratase (SDH) catalyzes the pyridoxal phosphate (PLP) dependent deamination of L-serine to yield pyruvate. Recombinant human serine dehydratase was crystallized by the hanging-drop vapour-diffusion method. Crystals were grown at 291 K using (NH4)(2)SO4 as precipitant. Diffraction data were obtained to a resolution of 2.5 A from a single frozen crystal using Cu Kalpha radiation. The crystal belongs to space group I422, with unit-cell parameters a = 157.4, b = 157.4, c = 59.2 A, alpha = beta = gamma = 90 degrees. The asymmetric unit contains one molecule and has a solvent content of about 46%.


Assuntos
L-Serina Desidratase/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , L-Serina Desidratase/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Biochemistry ; 42(44): 12854-65, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14596599

RESUMO

SDH (L-serine dehydratase, EC 4.3.1.17) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent dehydration of L-serine to yield pyruvate and ammonia. Liver SDH plays an important role in gluconeogenesis. Formation of pyruvate by SDH is a two-step reaction in which the hydroxyl group of serine is cleaved to produce aminoacrylate, and then the aminoacrylate is deaminated by nonenzymatic hydrolysis to produce pyruvate. The crystal structure of rat liver apo-SDH was determined by single isomorphous replacement at 2.8 A resolution. The holo-SDH crystallized with O-methylserine (OMS) was also determined at 2.6 A resolution by molecular replacement. SDH is composed of two domains, and each domain has a typical alphabeta-open structure. The active site is located in the cleft between the two domains. The holo-SDH contained PLP-OMS aldimine in the active site, indicating that OMS can form the Schiff base linkage with PLP, but the subsequent dehydration did not occur. Apo-SDH forms a dimer by inserting the small domain into the catalytic cleft of the partner subunit so that the active site is closed. Holo-SDH also forms a dimer by making contacts at the back of the clefts so that the dimerization does not close the catalytic cleft. The phosphate group of PLP is surrounded by a characteristic G-rich sequence ((168)GGGGL(172)) and forms hydrogen bonds with the amide groups of those amino acid residues, suggesting that the phosphate group can be protonated. N(1) of PLP participates in a hydrogen bond with Cys303, and similar hydrogen bonds with N(1) participating are seen in other beta-elimination enzymes. These hydrogen bonding schemes indicate that N(1) is not protonated, and thus, the pyridine ring cannot take a quinone-like structure. These characteristics of the bound PLP suggest that SDH catalysis is not facilitated by forming the resonance-stabilized structure of the PLP-Ser aldimine as seen in aminotransferases. A possible catalytic mechanism involves the phosphate group, surrounded by the characteristic sequence, acting as a general acid to donate a proton to the leaving hydroxyl group of serine.


Assuntos
L-Serina Desidratase/química , Fígado/enzimologia , Serina/análogos & derivados , Animais , Apoenzimas/química , Sítios de Ligação , Catálise , Simulação por Computador , Cristalização , Cristalografia por Raios X , Luz , Modelos Moleculares , Peso Molecular , Fosfato de Piridoxal/química , Ratos , Espalhamento de Radiação , Serina/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA