Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713211

RESUMO

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Assuntos
Quitinases , Inativação Gênica , Lacase , Quitinases/genética , Quitinases/metabolismo , Quitinases/biossíntese , Lacase/genética , Lacase/metabolismo , Lacase/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimologia , Fermentação , Interferência de RNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/enzimologia , Parede Celular/metabolismo , Parede Celular/genética
2.
Theor Appl Genet ; 137(4): 94, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578443

RESUMO

KEY MESSAGE: This study revealed the identification of a novel gene, Zm00001d042906, that regulates maize ear length by modulating lignin synthesis and reported a molecular marker for selecting maize lines with elongated ears. Maize ear length has garnered considerable attention due to its high correlation with yield. In this study, six maize inbred lines of significant importance in maize breeding were used as parents. The temperate maize inbred line Ye107, characterized by a short ear, was crossed with five tropical or subtropical inbred lines featuring longer ears, creating a multi-parent population displaying significant variations in ear length. Through genome-wide association studies and mutation analysis, the A/G variation at SNP_183573532 on chromosome 3 was identified as an effective site for discriminating long-ear maize. Furthermore, the associated gene Zm00001d042906 was found to correlate with maize ear length. Zm00001d042906 was functionally annotated as a laccase (Lac4), which showed activity and influenced lignin synthesis in the midsection cells of the cob, thereby regulating maize ear length. This study further reports a novel molecular marker and a new gene that can assist maize breeding programs in selecting varieties with elongated ears.


Assuntos
Lacase , Zea mays , Zea mays/genética , Lacase/genética , Estudo de Associação Genômica Ampla , Lignina , Melhoramento Vegetal
3.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636260

RESUMO

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Assuntos
Biodegradação Ambiental , Corantes , Lacase , Proteômica , Cogumelos Shiitake , Tetraciclina , Lacase/metabolismo , Lacase/genética , Tetraciclina/toxicidade , Tetraciclina/farmacologia , Corantes/toxicidade , Corantes/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Bacillus subtilis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia
4.
Bioresour Technol ; 399: 130591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490463

RESUMO

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Assuntos
Lacase , Polyporaceae , Corantes de Rosanilina , Trametes , Compostos de Tritil , Lacase/genética , Lacase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
5.
Int J Biol Macromol ; 266(Pt 1): 130986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508564

RESUMO

Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses. Characterization of NiO nanoparticles revealed distinctive FTIR absorption peaks indicating the nanoparticulate structure, while FESEM showed structured NiO with robust interconnections and dimensionality of about 50nm, confirmed by EDX analysis to have a consistent distribution of Ni and O. The immobilized PersiLac1 demonstrated enhanced thermal stability, with 85.55 % activity at 80 °C and reduced enzyme leaching, retaining 67.93 % activity across 15 biocatalytic cycles. It efficiently reduced rice straw (RS) phenol by 67.97 % within 210 min and degraded 70-78 % of tetracycline (TC) across a wide pH range (4.0-8.0), showing superior performance over the free enzyme. Immobilized laccase achieved up to 71 % TC removal at 40-80 °C, significantly outperforming the free enzyme. Notably, 54 % efficiency was achieved at 500 mg/L TC by immobilized laccase at 120 min. This research showed the potential of green-synthesized NiO nanoparticles to effectively immobilize laccase, presenting an eco-friendly approach to purify pollutants such as phenols and antibiotics. The durability and reusability of the immobilized enzyme, coupled with its ability to reduce pollutants, indicates a viable method for cleaning the environment. Nonetheless, the production costs and scalability of NiO nanoparticles for widespread industrial applications pose significant challenges. Future studies should focus on implementation at an industrial level and examine a wider range of pollutants to fully leverage the environmental clean-up capabilities of this innovative technology.


Assuntos
Enzimas Imobilizadas , Química Verde , Lacase , Metagenoma , Nanopartículas Metálicas , Níquel , Lacase/química , Lacase/genética , Lacase/metabolismo , Níquel/química , Química Verde/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanopartículas Metálicas/química , Estabilidade Enzimática , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Poluentes Ambientais/química
6.
Int J Biol Macromol ; 266(Pt 2): 131109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531520

RESUMO

Water buffalo is the only mammal found to degrade lignin so far, and laccase plays an indispensable role in the degradation of lignin. In this study, multiple laccase genes were amplified based on the water buffalo rumen derived lignin-degrading bacteria Bacillus cereus and Ochrobactrum pseudintermedium. Subsequently, the corresponding recombinant plasmids were transformed into E. coli expression system BL21 (DE3) for induced expression by Isopropyl-ß-D-thiogalactopyranoside (IPTG). After preliminary screening, protein purification and enzyme activity assays, Lac3833 with soluble expression and high enzyme activity was selected to test its characteristics, especially the ability of lignin degradation. The results showed that the optimum reaction temperature of Lac3833 was 40 °C for different substrates. The relative activity of Lac3833 reached the highest at pH 4.5 and pH 5.5 when the substrates were ABTS or 2,6-DMP and guaiacol, respectively. Additionally, Lac3833 could maintain high enzyme activity in different temperatures, pH and solutions containing Na+, K+, Mg2+, Ca2+ and Mn2+. Importantly, compared to negative treatment, recombinant laccase Lac3833 treatment showed that it had a significant function in degrading lignin. In conclusion, this is a pioneering study to produce recombinant laccase with lignin-degrading ability by bacteria from water buffalo rumen, which will provide new insights for the exploitation of more lignin-degrading enzymes.


Assuntos
Búfalos , Clonagem Molecular , Lacase , Lignina , Proteínas Recombinantes , Rúmen , Temperatura , Animais , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Rúmen/microbiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentração de Íons de Hidrogênio , Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/enzimologia , Bactérias/genética , Especificidade por Substrato
7.
Commun Biol ; 7(1): 348, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514801

RESUMO

Secreted laccases are important enzymes on a broad ecological scale for their role in mediating plant-microbe interactions, but within ascomycete fungi these enzymes have been primarily associated with melanin biosynthesis. In this study, a putatively secreted laccase, Sslac2, was characterized from the broad-host-range plant pathogen Sclerotinia sclerotiorum, which is largely unpigmented and is not dependent on melanogenesis for plant infection. Gene knockouts of Sslac2 demonstrate wide ranging developmental phenotypes and are functionally non-pathogenic. These mutants also displayed indiscriminate growth behaviors and enhanced biomass formation, seemingly as a result of their inability to respond to canonical environmental growth cues, a phenomenon further confirmed through chemical stress, physiological, and transcriptomic analyses. Transmission and scanning electron microscopy demonstrate apparent differences in extracellular matrix structure between WT and mutant strains that likely explain the inability of the mutants to respond to their environment. Targeting Sslac2 using host-induced gene silencing significantly improved resistance to S. sclerotiorum, suggesting that fungal laccases could be a valuable target of disease control. Collectively, we identified a laccase critical to the development and virulence of the broad-host-range pathogen S. sclerotiorum and propose a potentially novel role for fungal laccases in modulating environmental sensing.


Assuntos
Especificidade de Hospedeiro , Lacase , Lacase/genética , Plantas , Virulência/genética
8.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314447

RESUMO

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Assuntos
Hericium , Lacase , Lignina , Saccharomyces cerevisiae , Lacase/metabolismo , Lacase/genética , Lacase/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Hericium/metabolismo , Hericium/genética , Hericium/enzimologia , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sequência de Aminoácidos , Clonagem Molecular , Azida Sódica/farmacologia , Agaricales/enzimologia , Agaricales/genética , Glicosilação
9.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
10.
Microbiol Spectr ; 12(2): e0340523, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230929

RESUMO

The white rot fungus Cerrena unicolor 87613 has been previously shown to be a promising resource in laccase production, an enzyme with significant biotechnological applications. Conventional methods face technical challenges in improving laccase activity. Attempts are still being made to develop novel approaches for further enhancing laccase activity. This study aimed to understand the regulation of laccase activity in C. unicolor 87613 for a better exploration of the novel approach. Transcriptomic and metabolomic analyses were performed to identify key genes and metabolites involved in extracellular laccase activity. The findings indicated a strong correlation between the glutathione metabolism pathway and laccase activity. Subsequently, experimental verifications were conducted by manipulating the pathway using chemical approaches. The additive reduced glutathione (GSH) dose-dependently repressed laccase activity, while the GSH inhibitors (APR-246) and reactive oxygen species (ROS) inducer (H2O2) enhanced laccase activity. Changes in GSH levels could determine the intracellular redox homeostasis in interaction with ROS and partially affect the expression level of laccase genes in C. unicolor 87613 in turn. In addition, GSH synthetase was found to mediate GSH abundance in a feedback loop. This study suggests that laccase activity is negatively influenced by GSH metabolism and provides a theoretical basis for a novel strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.IMPORTANCEThe production of laccase activity is limited by various conventional approaches, such as heterologous expression, strain screening, and optimization of incubation conditions. There is an urgent need for a new strategy to meet industrial requirements more effectively. In this study, we conducted a comprehensive analysis of the transcriptome and metabolome of Cerrena unicolor 87613. For the first time, we discovered a negative role played by reduced glutathione (GSH) and its metabolic pathway in influencing extracellular laccase activity. Furthermore, we identified a feedback loop involving GSH, GSH synthetase gene, and GSH synthetase within this metabolic pathway. These deductions were confirmed through experimental investigations. These findings not only advanced our understanding of laccase activity regulation in its natural producer but also provide a theoretical foundation for a strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.


Assuntos
Cebus , Lacase , Polyporales , Transcriptoma , Lacase/genética , Lacase/metabolismo , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Perfilação da Expressão Gênica , Glutationa , Ligases/genética , Ligases/metabolismo
11.
Z Rheumatol ; 83(1): 4-14, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-37921883

RESUMO

Monogenic mutations in laccase domain-containing 1 (LACC1) are associated with clinical pictures that mimic severe courses of polyarticular or systemic juvenile idiopathic arthritis. The diseases are characterized by an early onset during the first year of life, a familial clustering and a high inflammatory activity. The courses are mostly difficult to influence and often lead to sequelae. In this article four cases from two families are presented in which the homozygous mutation p.T276fs* in LACC1 was detected. The children initially suffered from polyarticular or systemic forms of juvenile arthritis. Of the patients two are currently being treated with tocilizumab and methotrexate and one female patient without a basis treatment is currently only receiving local repeated intra-articular steroids. A fourth female patient underwent an allogeneic bone marrow transplantation due to a relapse of an acute lymphatic leukemia. Since then, no further inflammatory symptoms have occurred. The cases presented are compared with the other 50 courses published to date. In addition, recent studies investigating the influence of LACC1 mutations, particularly on macrophage function, are summarized.


Assuntos
Artrite Juvenil , Criança , Humanos , Feminino , Artrite Juvenil/diagnóstico , Artrite Juvenil/genética , Artrite Juvenil/complicações , Lacase/genética , Lacase/uso terapêutico , Metotrexato/uso terapêutico , Mutação/genética , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico
12.
Methods Mol Biol ; 2722: 139-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897606

RESUMO

Peroxidases (PRXs) and laccases (LACs) are enzymes involved in catalyzing the oxidation of the lignin monomers to facilitate lignin polymerization. However, due to the large number of genes composing these two families of enzymes, many details regarding their specific localization are only partially understood. Here, we present a fast and easy histochemical method that makes use of the artificial substrate 3,3',5,5'-tetramethylbenzidine (TMB) to visualize PRX and LAC activities in the hybrid aspen (Populus tremula x P. tremuloides) xylem tissue. In addition, we describe a protocol that allows the detection of the PRX substrate, H2O2, using the nonfluorescent dye 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) in woody tissues.


Assuntos
Peroxidase , Populus , Lacase/genética , Populus/genética , Lignina , Peróxido de Hidrogênio , Peroxidases/genética , Xilema , Parede Celular
13.
Microbiol Res ; 280: 127575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147744

RESUMO

Synergistic microbial co-culture has been an efficient and energy-saving strategy to produce lignin-degrading enzymes (LDEs), including laccase, manganese peroxidase, and versatile peroxidase. However, the regulatory mechanism of microbial co-culture is still unclear. Herein, the extracellular LDE activities of four white-rot fungi were significantly increased by 88-544% over monoculture levels when co-cultured with Rhodotorula mucilaginosa. Ptf6 was demonstrated from the 9 million Y1H clone library to be a shared GATA transcription factor in the four fungi, and could directly bind to the laccase gene promoter. Ptf6 exists in two alternatively spliced isoforms under monoculture, namely Ptf6-α (1078 amino acids) containing Cys2/Cys2-type zinc finger and Ptf6-ß (963 amino acids) lacking the complete domain. Ptf6 responded to co-culture by up-regulation of both its own transcripts and the proportion of Ptf6-α. Ptf6-α positively activated the production of most LDE isoenzymes and bound to four GATA motifs on the LDEs' promoter with different affinities. Moreover, Ptf6-regulation mechanism can be applicable to a variety of microbial co-culture systems. This study lays a theoretical foundation for further improving LDEs production and providing an efficient way to enhance the effects of biological and enzymatic pretreatment for lignocellulosic biomass conversion.


Assuntos
Lacase , Lignina , Lignina/metabolismo , Lacase/genética , Fatores de Transcrição/genética , Técnicas de Cocultura , Aminoácidos
14.
Protein J ; 43(1): 115-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127183

RESUMO

The addition of exogenous endocrine disrupting compounds (EDCs) like estrone, in the food chain through the aquatic system, disrupts steroid biosynthesis and metabolism by altering either the genomic or non-genomic pathway that eventually results in various diseases. Thus, bioremediation of these compounds is urgently required to prevent their addition and persistence in the environment. Enzymatic degradation has proven to be a knight in shining armour as it is safe and generates no toxic products. The multicopper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase), laccase with the potential to degrade both phenolic and non-phenolic substrates has recently gained attention. In this study, the laccase was purified, characterized, and used to study estrone degradation. The culture filtrate (crude laccase) was concentrated and precipitated using cold-acetone and dialyzed against tris buffer (50 mM) giving a four-fold partially purified form, with 45.56% yield and 204.14 U/mg as specific activity and a single peak at 250-300 nm. The partially purified laccase was approximately 80 kDa as estimated by SDS-PAGE preferred ABTS as substrate. Both crude and partially purified laccase showed maximum activity at pH 3.0, 40 °C, and 4 mM ABTS. Kinetic constants (Km, Vmax) of crude and partially purified laccase were found to be 0.83 mM; 494.31 mM/min, and 0.58 mM; 480.54 mM/min respectively. Iron sulphate and sodium azide inhibited laccase maximally. Crude and partially purified laccase degradation efficiency was 87.55 and 91.35% respectively. Spirulina CPCC-695 laccase with efficient estrone degradation ability renders them promising candidates for EDCs bioremediation.


Assuntos
Benzotiazóis , Lacase , Spirulina , Ácidos Sulfônicos , Lacase/química , Lacase/genética , Lacase/metabolismo , Estrona , Spirulina/metabolismo , Temperatura , Concentração de Íons de Hidrogênio
15.
Arch Microbiol ; 205(12): 384, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975884

RESUMO

Ganoderma lingzhi is a traditional Chinese medicine that has been used to improve health and longevity for thousands of years. It is usually cultivated on hardwood log- or sawdust-based formulations. Conversely, in this study, we used Miscanthus sacchariflorus (MSF), M. floridulus, and M. sinensis (MSS), fast-growing perennial grasses widely distributed in China, for G. lingzhi cultivation. Mycelial growth rate, activities of lignin-degrading enzymes on colonized mushroom substrates, and expression levels of CAZymes and laccase genes based on different substrates were analyzed. Total triterpenoids, sterols, and polysaccharides content of fruiting bodies obtained from different substrates were investigated. The activities of laccase and manganese peroxidase in mycelia increased in the MSF- and MSS-based formulations compared with that in the sawdust-based formulation. The results of mycelial growth- and cultivation-related experiments showed that the Miscanthus substrates could be used as the substrates for cultivating G. lingzhi. The content of active ingredients, namely triterpenoids, sterols, and polysaccharides, in fruiting bodies cultivated on the Miscanthus substrates did not decrease compared with those in substrate obtained from the sawdust-based formulation. Therefore, the present study provides alternative substrates for the cultivation of G. lingzhi, and a reference for better utilization of inexpensive substrate in future.


Assuntos
Reishi , Triterpenos , Lacase/genética , Lacase/metabolismo , Reishi/metabolismo , Poaceae , Polissacarídeos/metabolismo , Esteróis/metabolismo
16.
BMC Plant Biol ; 23(1): 591, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008764

RESUMO

BACKGROUND: Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease worldwide. Resistance genes that respond to Psa infection urgently need to be identified for controlling this disease. Laccase is mainly involved in the synthesis of lignin in the plant cell wall and plays a prominent role in plant growth and resistance to pathogen infection. However, the role of laccase in kiwifruit has not been reported, and whether laccase is pivotal in the response to Psa infection remains unclear. RESULTS: We conducted a bioinformatics analysis to identify 55 laccase genes (AcLAC1-AcLAC55) in the kiwifruit genome. These genes were classified into five cluster groups (I-V) based on phylogenetic analysis, with cluster groups I and II having the highest number of members. Analysis of the exon-intron structure revealed that the number of exons varied from 1 to 8, with an average of 5 introns. Our evolutionary analysis indicated that fragment duplication played a key role in the expansion of kiwifruit laccase genes. Furthermore, evolutionary pressure analysis suggested that AcLAC genes were under purifying selection. We also performed a cis-acting element analysis and found that AcLAC genes contained multiple hormone (337) and stress signal (36) elements in their promoter regions. Additionally, we investigated the expression pattern of laccase genes in kiwifruit stems and leaves infected with Psa. Our findings revealed that laccase gene expression levels in the stems were higher than those in the leaves 5 days after inoculation with Psa. Notably, AcLAC2, AcLAC4, AcLAC17, AcLAC18, AcLAC26, and AcLAC42 showed significantly higher expression levels (p < 0.001) compared to the non-inoculated control (0 d), suggesting their potential role in resisting Psa infection. Moreover, our prediction indicated that 21 kiwifruit laccase genes are regulated by miRNA397, they could potentially act as negative regulators of lignin biosynthesis. CONCLUSIONS: These results are valuable for further analysis of the resistance function and molecular mechanism of laccases in kiwifruit.


Assuntos
Actinidia , Lacase , Lacase/genética , Filogenia , Lignina , Evolução Biológica , Actinidia/genética , Actinidia/microbiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
17.
Microb Cell Fact ; 22(1): 236, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974259

RESUMO

BACKGROUND: Thermophilic fungus Myceliophthora thermophila has been widely used in industrial applications due to its ability to produce various enzymes. However, the lack of an efficient protein expression system has limited its biotechnological applications. RESULTS: In this study, using a laccase gene reporting system, we developed an efficient protein expression system in M. thermophila through the selection of strong constitutive promoters, 5'UTRs and signal peptides. The expression of the laccase was confirmed by enzyme activity assays. The results showed that the Mtpdc promoter (Ppdc) was able to drive high-level expression of the target protein in M. thermophila. Manipulation of the 5'UTR also has significant effects on protein expression and secretion. The best 5'UTR (NCA-7d) was identified. The transformant containing the laccase gene under the Mtpdc promoter, NCA-7d 5'UTR and its own signal peptide with the highest laccase activity (1708 U/L) was obtained. In addition, the expression system was stable and could be used for the production of various proteins, including homologous proteins like MtCbh-1, MtGh5-1, MtLPMO9B, and MtEpl1, as well as a glucoamylase from Trichoderma reesei. CONCLUSIONS: An efficient protein expression system was established in M. thermophila for the production of various proteins. This study provides a valuable tool for protein production in M. thermophila and expands its potential for biotechnological applications.


Assuntos
Lacase , Sordariales , Lacase/genética , Lacase/metabolismo , Regiões 5' não Traduzidas/genética , Regiões Promotoras Genéticas , Sordariales/genética , Sordariales/metabolismo
18.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37777838

RESUMO

The present study was conducted to isolate and identify white rot fungi (WRF) from wood decayed and to determine their ability to produce lignin-modifying enzymes (LMEs), specifically laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), on solid and liquid media supplemented with synthetic dyes namely 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), azure B, and phenol red. A total of 23 isolates of WRF were isolated from decayed wood and identified as eight different species namely Phanerochaete australis, Perenniporia tephropora, Lentinus squarrosulus, Ganoderma australe, Trametes polyzona, Lentinus sajor-caju, Gymnopilus dilepis, and Fomitopsis palustris based on morphological characteristics, DNA sequences of the internal transcribed spacer (ITS) region, and phylogenetic inference. The fungal isolates can be divided into four groups based on the type of LMEs produced, namely A (Lac-LiP-MnP) with 16 isolates, B (Lac-MnP) (three isolates), C (Lac) (three isolates), and D (MnP) (one isolate). This study highlights P. australis (BJ38) as the best producer of Lac and LiP, while L. squarrosulus (IPS72) is the best producer of MnP. The present study is the first reported P. australis as an efficient lignin degrader by demonstrating the highest activity of two important LMEs.


Assuntos
Lignina , Trametes , Lignina/metabolismo , Trametes/metabolismo , Madeira/metabolismo , Filogenia , Lacase/genética , Lacase/metabolismo
19.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685920

RESUMO

Being an abundant renewable source of aromatic compounds, lignin is an important component of future bio-based economy. Currently, biotechnological processing of lignin through low molecular weight compounds is one of the conceptually promising ways for its valorization. To obtain lignin fragments suitable for further inclusion into microbial metabolism, it is proposed to use a ligninolytic system of white-rot fungi, which mainly comprises laccases and peroxidases. However, laccase and peroxidase genes are almost always represented by many non-allelic copies that form multigene families within the genome of white-rot fungi, and the contributions of exact family members to the overall process of lignin degradation has not yet been determined. In this article, the response of the Trametes hirsuta LE-BIN 072 ligninolytic system to the presence of various monolignol-related phenolic compounds (veratryl alcohol, p-coumaric acid, vanillic acid, and syringic acid) in culture media was monitored at the level of gene transcription and protein secretion. By showing which isozymes contribute to the overall functioning of the ligninolytic system of the T. hirsuta LE-BIN 072, the data obtained in this study will greatly contribute to the possible application of this fungus and its ligninolytic enzymes in lignin depolymerization processes.


Assuntos
Lacase , Trametes , Lacase/genética , Trametes/genética , Lignina , Fenóis
20.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687038

RESUMO

Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.


Assuntos
Lacase , Metaloproteínas , Lacase/genética , Sítios de Ligação , Engenharia , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA