Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
New Phytol ; 243(1): 381-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741469

RESUMO

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Assuntos
Proteínas Fúngicas , Laccaria , Micorrizas , NADPH Oxidases , Espécies Reativas de Oxigênio , Simbiose , Laccaria/fisiologia , Laccaria/genética , Laccaria/metabolismo , Micorrizas/fisiologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Fosforilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética
2.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375883

RESUMO

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Assuntos
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raízes de Plantas/metabolismo , Simbiose/genética , Laccaria/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Monoterpenos/metabolismo
3.
Microsc Res Tech ; 86(8): 991-1002, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337350

RESUMO

Two species of the genus Laccaria, are described as new reports for Pakistan. Laccaria murina has been collected from a Himalayan moist temperate forest in Khanspur, KP, while L. pumila was found in the moist temperate forests of Kumrat Valley in Dir Upper, KP, and at higher altitudes of the Deosai plains of Gilgit-Baltistan, Pakistan. Phylogenetic analysis based on the nrITS region clustered the Pakistani species with L. murina sequences with other Asian collections and L. pumila from USA and Netherlands. SEM of basidiospores along with detailed micro-morphological data are provided. General distribution, habitat, ecology, and diagnostic features are also discussed. RESEARCH HIGHLIGHTS: It has new reports from Pakistan, studies based on light, scanning electron microscopy, and nrITS molecular markers. These species have been described with detailed micro-morphological and molecular phylogenetic analyses. General distribution, ecology, diagnostic features, and comparisons with closely related specimens have been provided. Graphical representation of DNA extraction and geographical locations of sampling sites are also illustrated (Figures 1 and 2). Very few members of this genus are already described from Pakistan.


Assuntos
Laccaria , Filogenia , Laccaria/genética , Paquistão , Microscopia Eletrônica de Varredura
4.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807327

RESUMO

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Assuntos
Laccaria , Micorrizas , Populus , Micorrizas/fisiologia , Árvores/genética , Árvores/metabolismo , Raízes de Plantas/metabolismo , Metilação de DNA/genética , DNA , Populus/metabolismo , Laccaria/genética
5.
New Phytol ; 236(2): 639-655, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794841

RESUMO

The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.


Assuntos
Laccaria , Micorrizas , Populus , Hidrolases de Éster Carboxílico , Epitopos/metabolismo , Laccaria/genética , Pectinas/metabolismo , Raízes de Plantas/metabolismo , Populus/metabolismo , Solo
6.
New Phytol ; 233(6): 2534-2547, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942023

RESUMO

In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR). The biological relevance of LbGH28A was confirmed by generating RNA interference (RNAi)-silenced LbGH28A mutants. We localized the LbGH28A protein by immunofluorescence confocal and immunogold cytochemical microscopy in poplar ectomycorrhizal roots. Quantitative PCR confirmed the induced expression of LbGH28A during ectomycorrhiza formation. Laccaria bicolor RNAi mutants have a lower ability to establish ectomycorrhiza, confirming the key role of this enzyme in symbiosis. The purified recombinant LbGH28A has its highest activity towards pectin and polygalacturonic acid. In situ localization of LbGH28A indicates that this endopolygalacturonase is located in both fungal and plant cell walls at the symbiotic hyphal front. These findings suggest that the symbiosis-induced pectinase LbGH28A is involved in the Hartig net formation and is an important determinant for successful symbiotic colonization.


Assuntos
Basidiomycota , Laccaria , Micorrizas , Laccaria/genética , Micorrizas/fisiologia , Raízes de Plantas/fisiologia , Poligalacturonase/genética , Poligalacturonase/metabolismo , Simbiose/fisiologia
7.
J Microbiol Methods ; 190: 106341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610385

RESUMO

Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/genética , Laccaria/genética , Micorrizas/genética , Nitrato Redutase/genética , Fragmentos de Peptídeos/genética , Regiões Promotoras Genéticas , Agrobacterium , Clonagem Molecular , DNA Fúngico , Regulação Fúngica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Laccaria/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Micorrizas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
8.
FEMS Microbiol Lett ; 368(15)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34338746

RESUMO

Fungal metabolic carbon acquisition and its subsequent partitioning between biomass production and respiration, i.e. the carbon-use efficiency (CUE), are central parameters in biogeochemical modeling. However, current available techniques for estimating these parameters are all associated with practical and theoretical shortcomings, making assessments unreliable. Gene expression analyses hold the prospect of phenotype prediction by indirect means, providing new opportunities to obtain information about metabolic priorities. We cultured four different fungal isolates (Chalara longipes, Laccaria bicolor, Serpula lacrymans and Trichoderma harzianum) in liquid media with contrasting nitrogen availability and measured growth rates and respiration to calculate CUE. By relating gene expression markers to measured carbon fluxes, we identified genes coding for 1,3-ß-glucan synthase and 2-oxoglutarate dehydrogenase as suitable markers for growth and respiration, respectively, capturing both intraspecific variation as well as within-strain variation dependent on growth medium. A transcript index based on these markers correlated significantly with differences in CUE between the fungal isolates. Our study paves the way for the use of these markers to assess differences in growth, respiration and CUE in natural fungal communities, using metatranscriptomic or the RT-qPCR approach.


Assuntos
Biomarcadores , Carbono , Proteínas Fúngicas , Fungos , Transcriptoma , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/genética , Biomarcadores/análise , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Laccaria/genética , Laccaria/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
9.
Curr Genet ; 66(4): 791-811, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32170354

RESUMO

For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.


Assuntos
Proteínas de Fluorescência Verde/genética , Laccaria/genética , Proteínas Luminescentes/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Agrobacterium/genética , Basidiomycota/genética , Núcleo Celular/genética , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Laccaria/metabolismo , Proteínas Luminescentes/metabolismo , Microrganismos Geneticamente Modificados , Microscopia de Fluorescência , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética , Proteína Vermelha Fluorescente
10.
Int J Biol Macromol ; 145: 974-984, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31669472

RESUMO

Laccaria amethystine and L. bicolor have served as model species for studying the life history and genetics of ectomycorrhizal fungi. However, the characterizations and variations of their mitogenomes are still unknown. In the present study, the mitogenomes of the two Laccaria species were assembled, annotated, and compared. The two mitogenomes of L. amethystine and L. bicolor comprised circular DNA molecules, with the sizes of 65,156 bp and 95,304 bp, respectively. Genome collinearity analysis revealed large-scale gene rearrangements between the two Laccaria species. Comparative mitogenome analysis indicated the introns of cox1 genes in Agaricales experienced frequent lost/gain eveants, which promoted the organization and size variations in Agaricales mitogenomes. Evolutionary analysis indicated the core protein-coding genes in the two mitogenomes were subject to strong pressure of purifying selection. Phylogenetic analysis using the Bayesian inference (BI) and Maximum likelihood (ML) methods based on a combined mitochondrial gene set resulted in identical and well-supported tree topologies, wherein the two Laccaria species were most closely related to Coprinopsis cinerea. This study severed as the first study on the mitogenomes of Laccaria species, which promoted a comprehensive understanding of the genetics and evolution of the model ectomycorrhizal fungi.


Assuntos
Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Íntrons/genética , Laccaria/genética , Micorrizas/genética , Filogenia , Agaricales/genética , Basidiomycota/classificação , Basidiomycota/genética , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/genética , Rearranjo Gênico , Laccaria/classificação , Micorrizas/classificação , RNA/genética , Análise de Sequência
11.
Nat Plants ; 5(7): 676-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285560

RESUMO

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.


Assuntos
Laccaria/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/microbiologia , Proteínas Quinases/metabolismo , Simbiose , Laccaria/genética , Micorrizas/genética , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Populus/genética , Populus/fisiologia , Proteínas Quinases/genética
12.
BMC Plant Biol ; 19(1): 4, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606121

RESUMO

BACKGROUND: Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized. RESULTS: Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity. CONCLUSIONS: In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.


Assuntos
Micorrizas/crescimento & desenvolvimento , Imunidade Vegetal/genética , Raízes de Plantas/microbiologia , Populus/microbiologia , Pseudomonas fluorescens/metabolismo , Plântula/microbiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Laccaria/genética , Laccaria/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Pseudomonas fluorescens/genética , RNA Bacteriano/genética , RNA Fúngico/genética , RNA de Plantas/genética , Plântula/imunologia , Plântula/metabolismo , Alinhamento de Sequência , Simbiose , Transcriptoma/genética
13.
Mycologia ; 110(5): 948-961, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240340

RESUMO

Species of Laccaria (Hydnangiaceae, Basidiomycota) are important in forest ecosystems as ectomycorrhizal fungi. Nine of the 75 described Laccaria species worldwide been reported from Korea. Most of these have European and North American names, and their identities are based solely on morphological features. To evaluate the taxonomy of Korean Laccaria, we used 443 specimens collected between 1981 and 2016 in a phylogenetic analysis based on sequence data from nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 rDNA (ITS) region, nuc 28S rDNA (28S), RNA polymerase II subunit 2 (rpb2), and translation elongation factor 1-α (tef1). Ten Laccaria species were identified. Three of these were previously reported from Korea: L. bicolor, L. tortilis, and L. vinaceoavellanea. Laccaria alba, L. japonica, and L. murina are confirmed as new reports from Korea. Lastly, four new Laccaria species are described: L. araneosa, L. parva, L. torosa, and L. versiforma. This study supports the general contention that Asian species of ectomycorrhizal fungi may not be conspecific with morphologically similar species from Europe and North America. Furthermore, identification based on morphology alone is often unreliable in Laccaria due to considerable overlap of characters among species. Thus, use of molecular methods is necessary for effective identification. Illustrations of the four newly described species and a taxonomic key to species of Laccaria in Korea are provided.


Assuntos
Carpóforos/crescimento & desenvolvimento , Laccaria/classificação , Micorrizas/classificação , Filogenia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Coreia (Geográfico) , Laccaria/citologia , Laccaria/genética , Laccaria/crescimento & desenvolvimento , Microscopia , Microscopia Eletrônica de Varredura , Micorrizas/citologia , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Esporos Fúngicos/ultraestrutura
14.
New Phytol ; 220(4): 1309-1321, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29624684

RESUMO

In ectomycorrhiza, root ingress and colonization of the apoplast by colonizing hyphae is thought to rely mainly on the mechanical force that results from hyphal tip growth, but this could be enhanced by secretion of cell-wall-degrading enzymes, which have not yet been identified. The sole cellulose-binding module (CBM1) encoded in the genome of the ectomycorrhizal Laccaria bicolor is linked to a glycoside hydrolase family 5 (GH5) endoglucanase, LbGH5-CBM1. Here, we characterize LbGH5-CBM1 gene expression and the biochemical properties of its protein product. We also immunolocalized LbGH5-CBM1 by immunofluorescence confocal microscopy in poplar ectomycorrhiza. We show that LbGH5-CBM1 expression is substantially induced in ectomycorrhiza, and RNAi mutants with a decreased LbGH5-CBM1 expression have a lower ability to form ectomycorrhiza, suggesting a key role in symbiosis. Recombinant LbGH5-CBM1 displays its highest activity towards cellulose and galactomannans, but no activity toward L. bicolor cell walls. In situ localization of LbGH5-CBM1 in ectomycorrhiza reveals that the endoglucanase accumulates at the periphery of hyphae forming the Hartig net and the mantle. Our data suggest that the symbiosis-induced endoglucanase LbGH5-CBM1 is an enzymatic effector involved in cell wall remodeling during formation of the Hartig net and is an important determinant for successful symbiotic colonization.


Assuntos
Celulase/metabolismo , Laccaria/enzimologia , Micorrizas/enzimologia , Simbiose/fisiologia , Celulase/química , Celulase/isolamento & purificação , Celulose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo , Laccaria/genética , Mananas/metabolismo , Micorrizas/genética , Pichia/metabolismo , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
15.
J Microbiol Biotechnol ; 28(12): 2057-2063, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661344

RESUMO

Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana. The properties of recombinant laccase expressed by P. pastoris were investigated. The laccase activity was optimal at 3.6 pH and 40°C. It exhibited Km and Vmax values of 0.565 mmol l⁻¹ and 1.51 µmol l⁻¹ min⁻¹ for ABTS respectively. As compared with untransformed control plants, the laccase activity in crude extracts of transgenic lines exhibited a 5.4 to 12.4-fold increase. Both laccases expressed in transgenic P. pastoris or A. thaliana could decolorize crystal violet. These results indicated that L. bicolor laccase gene may be transgenically exploited in fungi or plants for dye decolorization.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Laccaria/enzimologia , Laccaria/genética , Lacase/genética , Pichia/genética , Pichia/metabolismo , Clonagem Molecular , Corantes/metabolismo , Estabilidade Enzimática , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Violeta Genciana/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Temperatura , Transformação Genética
16.
Fungal Biol ; 121(11): 939-955, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29029701

RESUMO

Purple Laccaria are ectomycorrhizal basidiomycetes associated with temperate forests all over the Northern Hemisphere in at least two taxa: Laccaria amethysteo-occidentalis in North America, and L. amethystina complex in Eurasia, as shown by Vincenot et al. (2012). Here, we combine a further study of the genetic structure of L. amethystina populations from Europe to southwestern China and Japan, using neutral Single Sequence Repeat (SSR; microsatellite) markers; and a systematic description of two novel Asian species, namely Laccaria moshuijun and Laccaria japonica, based on ecological, morphological, and molecular criteria (rDNA sequences). Population genetics provides evidence of the ancient isolation of three regional groups, with strong signal for speciation, and suggests a centre of origin of modern populations closest to present-day Chinese populations. Phylogenetic analyses confirm speciation at the molecular level, reflected in morphological features: L. moshuijun samples (from Yunnan, China) display strongly variable cheilocystidia, while L. japonica samples (from Japan) present distinctive globose to subglobose spores and clavate cheilocystidia. This study of a species complex primarily described with an extremely wide ecological and geographical range sheds new light on the biodiversity and biogeography of ectomycorrhizal fungi.


Assuntos
Laccaria/classificação , Laccaria/isolamento & purificação , Repetições de Microssatélites , Filogenia , Filogeografia , China , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Europa (Continente) , Japão , Laccaria/citologia , Laccaria/genética , Microscopia , Análise de Sequência de DNA
17.
BMC Genomics ; 18(1): 737, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923004

RESUMO

BACKGROUND: Ectomycorrhizal (ECM) fungi develop a mutualistic symbiotic interaction with the roots of their host plants. During this process, they undergo a series of developmental transitions from the running hyphae in the rhizosphere to the coenocytic hyphae forming finger-like structures within the root apoplastic space. These transitions, which involve profound, symbiosis-associated metabolic changes, also entail a substantial transcriptome reprogramming with coordinated waves of differentially expressed genes. To date, little is known about the key transcriptional regulators driving these changes, and the aim of the present study was to delineate and functionally characterize the transcription factor (TF) repertoire of the model ECM fungus Laccaria bicolor. RESULTS: We curated the L. bicolor gene models coding for transcription factors and assessed their expression and regulation in Poplar and Douglas fir ectomycorrhizae. We identified 285 TFs, 191 of which share a significant similarity with known transcriptional regulators. Expression profiling of the corresponding transcripts identified TF-encoding fungal genes differentially expressed in the ECM root tips of both host plants. The L. bicolor core set of differentially expressed TFs consists of 12 and 22 genes that are, respectively, upregulated and downregulated in symbiotic tissues. These TFs resemble known fungal regulators involved in the control of fungal invasive growth, fungal cell wall integrity, carbon and nitrogen metabolism, invasive stress response and fruiting-body development. However, this core set of mycorrhiza-regulated TFs seems to be characteristic of L. bicolor and our data suggest that each mycorrhizal fungus has evolved its own set of ECM development regulators. A subset of the above TFs was functionally validated with the use of a heterologous, transcription activation assay in yeast, which also allowed the identification of previously unknown, transcriptionally active yet secreted polypeptides designated as Secreted Transcriptional Activator Proteins (STAPs). CONCLUSIONS: Transcriptional regulators required for ECM symbiosis development in L. bicolor have been uncovered and classified through genome-wide analysis. This study also identifies the STAPs as a new class of potential ECM effectors, highly expressed in mycorrhizae, which may be involved in the control of the symbiotic root transcriptome.


Assuntos
Perfilação da Expressão Gênica , Genômica , Laccaria/genética , Micorrizas/genética , Simbiose , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Laccaria/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fatores de Transcrição/genética
18.
Curr Genet ; 63(2): 215-227, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27387518

RESUMO

Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.


Assuntos
Agrobacterium/genética , Laccaria/genética , Mutagênese Insercional , Micorrizas/genética , Sequência de Bases , Sítios de Ligação/genética , Southern Blotting , DNA Bacteriano/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Análise de Sequência de DNA , Simbiose , Transformação Genética
19.
Mycorrhiza ; 26(1): 19-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25957233

RESUMO

Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.


Assuntos
Aquaporinas/genética , Carpóforos/fisiologia , Laccaria/genética , Micorrizas/fisiologia , Picea/microbiologia , Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Laccaria/crescimento & desenvolvimento , Laccaria/metabolismo , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Óxidos de Nitrogênio/metabolismo , Picea/genética , Picea/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Regulação para Cima , Água/metabolismo
20.
Curr Microbiol ; 71(6): 669-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26330378

RESUMO

Lepista nuda (Bull. ex Fr.) Cooke (Tricholomataceae) is an edible fungus with both economic and medical value. Identification of its mating-type loci is important for promoting breeding programs in L. nuda. The A mating-type locus of L. nuda and its flanking region were cloned and characterized in the present study. It contained two homeodomain transcription factor genes (called lna1 and lna2). Lna1 and Lna2 protein harbored conserved motif of homeodomain transcription factor protein. The novel finding of this study was that the gene order around the A locus was mip, lna2, lna1, and ß-fg in L. nuda, which was differed from other edible fungi. In addition, lna1 and lna2 showed divergent, inward transcriptional direction. The phylogenetic tree of HD proteins showed that L. nuda Lna1 and Lna2 were phylogenetically related with Laccaria bicolor. Our results revealed that the A mating-type locus had been subjected to gene rearrangements relative to all other basidiomycetes.


Assuntos
Agaricales/genética , Genes Fúngicos Tipo Acasalamento , Clonagem Molecular , Ordem dos Genes , Laccaria/genética , Filogenia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA