Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803106

RESUMO

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Assuntos
Inulina , Lactobacillus plantarum , Viabilidade Microbiana , Polissacarídeos , Prebióticos , Secagem por Atomização , Inulina/química , Inulina/farmacologia , Polissacarídeos/química , Viabilidade Microbiana/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Probióticos , Temperatura , Dessecação/métodos , Solubilidade
2.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738816

RESUMO

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Assuntos
Cabelo , Via de Sinalização Wnt , Animais , Camundongos , Cabelo/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/química , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Biotransformação , Fermentação , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 119(15): e2116954119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394868

RESUMO

Microbial communities often face external perturbations that can induce lasting changes in their composition and functions. Our understanding of how multispecies communities respond to perturbations such as antibiotics is limited, with susceptibility assays performed on individual, isolated species our primary guide in predicting community transitions. Here, we studied how bacterial growth dynamics can overcome differences in antibiotic susceptibility in determining community resilience: the recovery of the original community state following antibiotic exposure. We used an experimental community containing Corynebacterium ammoniagenes and Lactobacillus plantarum that displays two alternative stable states as a result of mutual inhibition. Although C. ammoniagenes was more susceptible to chloramphenicol in monocultures, we found that chloramphenicol exposure nonetheless led to a transition from the L. plantarum-dominated to the C. ammoniagenes-dominated community state. Combining theory and experiments, we demonstrated that growth rate differences between the two species made the L. plantarum-dominated community less resilient to several antibiotics with different mechanisms of action. Taking advantage of an observed cooperativity­a dependence on population abundance­in the growth of C. ammoniagenes, we next analyzed in silico scenarios that could compromise the high resilience of the C. ammoniagenes-dominated state. The model predicted that lowering the dispersal rate, through interacting with the growth at low population densities, could make the C. ammoniagenes state fragile against virtually any kind of antibiotic, a prediction that we confirmed experimentally. Our results highlight that species susceptibility to antibiotics is often uninformative of community resilience, as growth dynamics in the wake of antibiotic exposure can play a dominant role.


Assuntos
Antibacterianos , Corynebacterium , Resistência Microbiana a Medicamentos , Lactobacillus plantarum , Microbiota , Adaptação Fisiológica , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Corynebacterium/crescimento & desenvolvimento , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Microbiota/fisiologia
4.
Microbiol Spectr ; 10(1): e0100621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080431

RESUMO

Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.


Assuntos
Ferro/metabolismo , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Manganês/metabolismo , Zinco/metabolismo , Cinética , Lactobacillus acidophilus/química , Lactobacillus plantarum/química
5.
Int J Biol Macromol ; 194: 539-545, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808148

RESUMO

Probiotics are incorporated into food products because of numerous favorable effects on human health. The viability of probiotics is often affected by unfavorable interference during processing. The encapsulation can provide protection to probiotics during mechanical processing, storage, and gastrointestinal digestion. This study aimed to evaluate the protective effect of whey protein isolate (WPI) and dextran (DX) conjugates for Lactobacillus plantarum. The WPI-DX conjugate was prepared by Maillard-based glycation and confirmed by gel electrophoresis. Extending the heating time from 1 to 5 h decreased the content of tryptophan residues and increased the amide I and amide II bands. The enhanced protective ability of Maillard reaction products (MRPs) for L. plantarum was observed under conditions of stress (pH, heat, and salt) and in vitro digestion. In situ viability tests showed that encapsulation improved the survival of bacteria in kefir during 15 days of storage at 4 °C. Overall, our results provide valuable information for the development of functional probiotic food products.


Assuntos
Cápsulas/farmacologia , Manipulação de Alimentos/métodos , Alimento Funcional/microbiologia , Kefir/microbiologia , Lactobacillus plantarum , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo
6.
Front Immunol ; 12: 736129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447391

RESUMO

The present study evaluated the protection of Lactiplantibacillus plantarum CCFM8661, a candidate probiotic with excellent benzopyrene (B[a]P)-binding capacity in vitro, against B[a]P-induced toxicity in the colon and brain of mice. Mice that received B[a]P alone served as the model group. Each mouse in the L. plantarum treatment groups were administered 2×109 colony forming unit (CFU) of L. plantarum strains once daily, followed by an oral dose of B[a]P at 50 mg/kg body weight. Behavior, biochemical indicators in the colon and brain tissue, and the gut microbiota composition and short-chain fatty acid (SCFA) levels in the gut were investigated. Compared to the treatment in the model group, CCFM8661 treatment effectively reduced oxidative stress in the brain, improved behavioral performance, increased intestinal barrier integrity, and alleviated histopathological changes in mice. Moreover, CCFM8661 increased the gut microbiota diversity and abundance of Ruminococcus and Lachnospiraceae and reduced the abundance of pro-inflammatory Turicibacter spp. Additionally, the production of SCFAs was significantly increased by L. plantarum CCFM8661. Our results suggest that CCFM8661 is effective against acute B[a]P-induced toxicity in mice and that it can be considered as an effective and easy dietary intervention against B[a]P toxicity.


Assuntos
Benzo(a)pireno/toxicidade , Encéfalo/efeitos dos fármacos , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Probióticos , Animais , Comportamento Animal/efeitos dos fármacos , Benzo(a)pireno/metabolismo , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Disbiose , Ácidos Graxos Voláteis/metabolismo , Lactobacillus plantarum/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Teste de Campo Aberto , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Junções Íntimas/patologia
7.
Molecules ; 26(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361848

RESUMO

The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 µmol TE/mg, FRAP = 463.97 µmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and ß-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.


Assuntos
Antibacterianos , Antioxidantes , Escherichia coli/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Óleos Voláteis , Própole/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
8.
Biochem Biophys Res Commun ; 575: 73-77, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461438

RESUMO

The general characteristics of the effect of surfactants on the activity of lysozyme were demonstrated. The kinetics of bacterial cell lysis is consistent with the Michaelis-Menten equation and the presence of surfactants does not shift the pH-optimum of activity. Surfactants do not change the Km value but instead, affect the Vmax value. The experimental dependencies are well described by theoretical equations, which assume three surfactant binding sites on the lysozyme molecule. The dependencies of the activity of lysozyme on the surfactant concentration are either a step type (i.e., a higher plateau becomes a lower plateau), or a dependency with a maximum and continuation of the curve in the form of a plateau but with an increase in the surfactant concentration. It can be assumed that there is a mechanism for the regulation of lysozyme activity by an unknown natural factor that has a suitable hydrophobic radical capable of binding to the surface of lysozyme.


Assuntos
Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Muramidase/metabolismo , Polissorbatos/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactobacillus plantarum/crescimento & desenvolvimento , Muramidase/isolamento & purificação , Ligação Proteica
9.
World J Microbiol Biotechnol ; 37(7): 115, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34125306

RESUMO

The aim of this work was to obtain freeze-dried biomass of the native Patagonian Lactiplantibacillus plantarum strain UNQLp 11 from a whey permeate (WP)-based medium and compare it with the growth in commercial MRS broth medium. Survival and activity of the freeze-dried Lb. plantarum strain were investigated after inoculation in wine as a starter culture for malolactic fermentation (MLF). The effect of storage and rehydration condition of the dried bacteria and the nutrient supplementation of wine were also studied. The freeze-dried cultures from WP and those grown in MRS showed similar survival results. Rehydration in MRS broth for 24 h and the addition of a rehydration medium to wine as nutrient supplementation improved the survival under wine harsh conditions and guaranteed the success of MLF. Storage at 4 °C under vacuum was the best option, maintaining high cell viability for at least 56 days, with malic acid consumption higher than 90% after 7 days of inoculation in a wine-like medium. These results represent a significant advance for sustainable production of dried malolactic starter cultures in an environmentally friendly process, which is low cost and easy to apply in winemaking under harsh physicochemical conditions.


Assuntos
Meios de Cultura/química , Lactobacillus plantarum/crescimento & desenvolvimento , Malatos/química , Soro do Leite/química , Vinho/microbiologia , Técnicas Bacteriológicas , Biomassa , Fermentação , Microbiologia de Alimentos , Liofilização , Lactobacillus plantarum/química , Lactobacillus plantarum/isolamento & purificação , Viabilidade Microbiana
10.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181131

RESUMO

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Medicago sativa/microbiologia , Microbiota , Silagem/microbiologia , Azidas/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano , Fermentação , Lactobacillales/crescimento & desenvolvimento , Medicago sativa/metabolismo , Propídio/análogos & derivados , Propídio/análise
11.
PLoS One ; 16(5): e0249250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974647

RESUMO

In this study, different probiotics commonly used to produce fermented dairy products were inoculated independently for Chenopodium formosanum Koidz. fermentation. The strain with the highest level of antioxidant activity was selected and the fermentation process was further optimized via response surface methodology (RSM). Lactobacillus plantarum BCRC 11697 was chosen because, compared to other lactic acid bacteria, it exhibits increased free radical scavenging ability and can produce more phenolic compounds, DPPH (from 72.6% to 93.2%), and ABTS (from 64.2% to 76.9%). Using RSM, we further optimize the fermentation protocol of BCRC 11697 by adjusting the initial fermentation pH, agitation speed, and temperature to reach the highest level of antioxidant activity (73.5% of DPPH and 93.8% of ABTS). The optimal protocol (pH 5.55, 104 rpm, and 24.4°C) resulted in a significant increase in the amount of phenolic compounds as well as the DPPH and ABTS free radical scavenging ability of BCRC 11697 products. The IC50 of the DPPH and ABTS free radical scavenging ability were 0.33 and 2.35 mg/mL, respectively, and both protease and tannase activity increased after RSM. An increase in lower molecular weight (<24 kDa) protein hydrolysates was also observed. Results indicated that djulis fermented by L. plantarum can be a powerful source of natural antioxidants for preventing free radical-initiated diseases.


Assuntos
Antioxidantes/química , Técnicas de Cultura Celular por Lotes/métodos , Chenopodium/química , Lactobacillus plantarum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Chenopodium/metabolismo , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/metabolismo , Fenóis/química , Fenóis/metabolismo , Hidrolisados de Proteína/metabolismo
12.
Sci Rep ; 11(1): 9417, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941803

RESUMO

This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5'-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83-58.56 mg/100 g) compared to the prebiotics (34.19-40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.


Assuntos
Glucose/metabolismo , Lactobacillus plantarum/metabolismo , Monossacarídeos/metabolismo , Iogurte/microbiologia , Ácido gama-Aminobutírico/biossíntese , Ácido Glutâmico/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/crescimento & desenvolvimento , Metabolômica , Prebióticos , Probióticos
13.
J Basic Microbiol ; 61(6): 576-590, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33945164

RESUMO

In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.


Assuntos
Ácidos/metabolismo , Lactobacillus plantarum/fisiologia , Pressão Osmótica/fisiologia , Adaptação Fisiológica , Contagem de Colônia Microbiana , Fermentação , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/crescimento & desenvolvimento , Viabilidade Microbiana , Lactato de Sódio/metabolismo
14.
J Sci Food Agric ; 101(14): 5792-5806, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33792043

RESUMO

BACKGROUND: Significant amounts of nutrients, including dietary fibers, proteins, minerals, and vitamins are present in legumes, but the presence of anti-nutritional factors (ANFs) like phytic acid, tannins, and enzyme inhibitors impact the consumption of legumes and nutrient availability. In this research, the effect of a physical process (sonication or precooking) and fermentation with Lactobacillus plantarum and Pediococcus acidilactici on the ANFs of some legumes was evaluated. RESULTS: Total phenolic content was significantly (P < 0.05) reduced for modified and fermented substrates compared with non-fermented controls. Trypsin inhibitory activity (TIA) was reduced significantly for all substrates except for unsonicated soybean and lentils fermented with L. plantarum and P. acidilactici. When physical processing was done, there was a decrease in TIA for all the substrate. Phytic acid content decreased for physically modified soybean and lentil but not significantly for green pea. Even though there was a decrease in ANFs, there was no significant change in in vitro protein digestibility for all substrates except for unsonicated L. plantarum fermented soybean flour and precooked L. plantarum fermented lentil. Similarly, there was a change in amino acid content when physically modified and fermented. CONCLUSION: Both modified and unmodified soybean flour, green pea flour, and lentil flour supported the growth of L. plantarum and P. acidilactici. The fermentation of this physically processed legume and pulse flours influenced the non-nutritive compounds, thereby potentially improving nutritional quality and usage. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Farinha/microbiologia , Lactobacillus plantarum/metabolismo , Lens (Planta)/microbiologia , Pisum sativum/microbiologia , Fermentação , Farinha/análise , Manipulação de Alimentos , Lactobacillus plantarum/crescimento & desenvolvimento , Lens (Planta)/química , Lens (Planta)/metabolismo , Avaliação Nutricional , Pisum sativum/química , Pisum sativum/metabolismo , Ácido Fítico/análise , Ácido Fítico/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia
15.
Sci Rep ; 11(1): 7617, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828119

RESUMO

Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.


Assuntos
Anti-Infecciosos/metabolismo , Meios de Cultura/química , Lactobacillus plantarum/crescimento & desenvolvimento , Meios de Cultura/análise , Meios de Cultura/síntese química , Fermentação , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/metabolismo , Lactobacillus plantarum/metabolismo
16.
J Sci Food Agric ; 101(13): 5487-5497, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33682152

RESUMO

BACKGROUND: Non-diary beverages with probiotic properties are of great interest nowadays. In this research, we evaluated the suitability of carob kibbles in the manufacture of kvass. Kvass is a low-alcohol drink popular in Central and Eastern Europe and indicated as a potential non-diary beverage with probiotic properties. Therefore, the viability of probiotic strains of Lactobacillus plantarum and Saccharomyces boulardii during 4 weeks' storage in manufactured beverages was tested. RESULTS: Carob kibbles introduced significant amounts of phenolic compounds into kvasses, especially gallic acid (up to 117.45 ± 10.56 mg L-1 ), and improved antiradical activity up to 78% after fermentation. Moreover, fermentation efficiently reduced furfural and hydroxymethylfurfural content in samples up to 12.9% and 29.9%, respectively. Kvasses with rye malt extract possessed coffee-like, chocolate-like, roasted and caramel-like odours and a more bitter taste. Whereas kvass with carob kibbles was characterized by fruit-like odour and sweeter taste. Fermentation contributed to a creation as well as degradation of volatiles. L. plantarum exhibited higher general mortality during storage, whereas, in the case of S. boulardii, the viability was significantly higher regardless of the sample composition. CONCLUSION: This is the first study reporting the use of carob kibbles for kvass production. The obtained results showed that carob kibbles can replace rye malt extract, at least partially, in the production of kvass, giving to the product added health benefits. Moreover, S. boulardii is a better choice for production of kvass with probiotic properties. © 2021 Society of Chemical Industry.


Assuntos
Bebidas Alcoólicas/análise , Fabaceae/microbiologia , Lactobacillus plantarum/metabolismo , Probióticos/análise , Saccharomyces boulardii/metabolismo , Adulto , Bebidas Alcoólicas/microbiologia , Fabaceae/química , Fabaceae/metabolismo , Feminino , Fermentação , Microbiologia de Alimentos , Galactanos/metabolismo , Humanos , Lactobacillus plantarum/crescimento & desenvolvimento , Masculino , Mananas/metabolismo , Pessoa de Meia-Idade , Gomas Vegetais/metabolismo , Probióticos/metabolismo , Saccharomyces boulardii/crescimento & desenvolvimento , Paladar
17.
J Microbiol Biotechnol ; 31(5): 717-725, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33782221

RESUMO

This study aimed to optimize medium composition and culture conditions for enhancing the biomass of Lactobacillus plantarum 200655 using statistical methods. The one-factor-at-a-time (OFAT) method was used to screen the six carbon sources (glucose, sucrose, maltose, fructose, lactose, and galactose) and six nitrogen sources (peptone, tryptone, soytone, yeast extract, beef extract, and malt extract). Based on the OFAT results, six factors were selected for the Plackett- Burman design (PBD) to evaluate whether the variables had significant effects on the biomass. Maltose, yeast extract, and soytone were assessed as critical factors and therefore applied to response surface methodology (RSM). The optimal medium composition by RSM was composed of 31.29 g/l maltose, 30.27 g/l yeast extract, 39.43 g/l soytone, 5 g/l sodium acetate, 2 g/l K2HPO4, 1 g/l Tween 80, 0.1 g/l MgSO4·7H2O, and 0.05 g/l MnSO4·H2O, and the maximum biomass was predicted to be 3.951 g/l. Under the optimized medium, the biomass of L. plantarum 200655 was 3.845 g/l, which was similar to the predicted value and 1.58-fold higher than that of the unoptimized medium (2.429 g/l). Furthermore, the biomass increased to 4.505 g/l under optimized cultivation conditions. For lab-scale bioreactor validation, batch fermentation was conducted with a 5-L bioreactor containing 3.5 L of optimized medium. As a result, the highest yield of biomass (5.866 g/l) was obtained after 18 h of incubation at 30°C, pH 6.5, and 200 rpm. In conclusion, mass production by L. plantarum 200655 could be enhanced to obtain higher yields than that in MRS medium.


Assuntos
Biomassa , Meios de Cultura/química , Lactobacillus plantarum/metabolismo , Reatores Biológicos , Carbono/análise , Carbono/metabolismo , Meios de Cultura/metabolismo , Análise Fatorial , Fermentação , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Temperatura
18.
Ultrason Sonochem ; 73: 105486, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33639530

RESUMO

In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.


Assuntos
Fermentação , Sucos de Frutas e Vegetais/microbiologia , Lactobacillus plantarum/crescimento & desenvolvimento , Malus , Sonicação/métodos , Aminoácidos/metabolismo , Compostos Orgânicos/metabolismo , Fenóis/metabolismo , Açúcares/metabolismo
19.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608291

RESUMO

Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit health benefits in the consumer. Lactiplantibacillus plantarum strains display high survival during transit through the mammalian gastrointestinal tract and were shown to have health-promoting properties. Growth on the fructose polysaccharide inulin is relatively uncommon in L. plantarum, and in this study we describe FosE, a plasmid-encoded ß-fructosidase of L. plantarum strain Lp900 which has inulin-hydrolyzing properties. FosE contains an LPxTG-like motif involved in sortase-dependent cell wall anchoring but is also (partially) released in the culture supernatant. In addition, we examined the effect of diet supplementation with inulin on the intestinal persistence of Lp900 in adult male Wistar rats in diets with distinct calcium levels. Inulin supplementation in high-dietary-calcium diets significantly increased the intestinal persistence of L. plantarum Lp900, whereas this effect was not observed upon inulin supplementation of the low-calcium diet. Moreover, intestinal persistence of L. plantarum Lp900 was determined when provided as a probiotic (by itself) or as a synbiotic (i.e., in an inulin suspension) in rats that were fed unsupplemented diets containing the different calcium levels, revealing that the synbiotic administration increased bacterial survival and led to higher abundance of L. plantarum Lp900 in rats, particularly in a low-calcium-diet context. Our findings demonstrate that inulin supplementation can significantly enhance the intestinal delivery of L. plantarum Lp900 but that this effect strongly depends on calcium levels in the diet.IMPORTANCE Synbiotics combine probiotics with prebiotics to synergistically elicit a health benefit in the consumer. Previous studies have shown that prebiotics can selectively stimulate the growth in the intestine of specific bacterial strains. In synbiotic supplementations the prebiotics constituent could increase the intestinal persistence and survival of accompanying probiotic strain(s) and/or modulate the endogenous host microbiota to contribute to the synergistic enhancement of the health-promoting effects of the synbiotic constituents. Our study establishes a profound effect of dietary-calcium-dependent inulin supplementation on the intestinal persistence of inulin-utilizing L. plantarum Lp900 in rats. We also show that in rats on a low-dietary-calcium regime, the survival and intestinal abundance of L. plantarum Lp900 are significantly increased by administering it as an inulin-containing synbiotic. This study demonstrates that prebiotics can enhance the intestinal delivery of specific probiotics and that the prebiotic effect is profoundly influenced by the calcium content of the diet.


Assuntos
Cálcio da Dieta/farmacologia , Intestinos/microbiologia , Inulina/farmacologia , Lactobacillus plantarum , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dieta , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/crescimento & desenvolvimento , Masculino , Ratos Wistar , Simbióticos , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
20.
J Sci Food Agric ; 101(5): 1758-1766, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32892354

RESUMO

BACKGROUND: Lactobacillus plantarum is an important probiotic with a variety of physiologic functions. Studies have focused on the effects of L. plantarum on host physiology and microbiota, but studies of the fate of strains after they enter the intestine are lacking. In this study, L. plantarum ST-III was genetically engineered to express green fluorescent protein (GFP). Mice were administered ST-III-GFP, and fluorescence imaging was used to study the distribution, location and quantity of strains within 8 h after entry into the intestine. RESULTS: The results indicated that genetic modification did not affect the growth of ST-III, tolerance to simulated gastric juice and intestinal fluid or tolerance to antibiotics (with the exception of chloramphenicol). Fluorescence imaging and colony counting indicated that ST-III-GFP can be detected in the small intestine 5 min after oral gavage. After 30 min, nearly all ST-III-GFP was located in the small intestine. After 1.5 h, ST-III-GFP was detected in both the cecum and large intestine. After 4 and 8 h, ST-III-GFP was mainly concentrated in the cecum and large intestine. Compared to the initial amount ingested, the survival rate of ST-III-GFP within the intestine of mice was 10% after 8 h. In addition, a strong linear relationship was found between the fluorescence intensity and the viable count of ST-III-GFP. CONCLUSIONS: The obtained data indicate that the amount of ST-III-GFP can be estimated by measuring the fluorescence intensity of this novel strain within the intestinal tract. © 2020 Society of Chemical Industry.


Assuntos
Rastreamento de Células/métodos , Proteínas de Fluorescência Verde/química , Intestinos/microbiologia , Lactobacillus plantarum/química , Imagem Óptica/métodos , Probióticos/química , Animais , Contagem de Colônia Microbiana , Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA