Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2116954119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394868

RESUMO

Microbial communities often face external perturbations that can induce lasting changes in their composition and functions. Our understanding of how multispecies communities respond to perturbations such as antibiotics is limited, with susceptibility assays performed on individual, isolated species our primary guide in predicting community transitions. Here, we studied how bacterial growth dynamics can overcome differences in antibiotic susceptibility in determining community resilience: the recovery of the original community state following antibiotic exposure. We used an experimental community containing Corynebacterium ammoniagenes and Lactobacillus plantarum that displays two alternative stable states as a result of mutual inhibition. Although C. ammoniagenes was more susceptible to chloramphenicol in monocultures, we found that chloramphenicol exposure nonetheless led to a transition from the L. plantarum-dominated to the C. ammoniagenes-dominated community state. Combining theory and experiments, we demonstrated that growth rate differences between the two species made the L. plantarum-dominated community less resilient to several antibiotics with different mechanisms of action. Taking advantage of an observed cooperativity­a dependence on population abundance­in the growth of C. ammoniagenes, we next analyzed in silico scenarios that could compromise the high resilience of the C. ammoniagenes-dominated state. The model predicted that lowering the dispersal rate, through interacting with the growth at low population densities, could make the C. ammoniagenes state fragile against virtually any kind of antibiotic, a prediction that we confirmed experimentally. Our results highlight that species susceptibility to antibiotics is often uninformative of community resilience, as growth dynamics in the wake of antibiotic exposure can play a dominant role.


Assuntos
Antibacterianos , Corynebacterium , Resistência Microbiana a Medicamentos , Lactobacillus plantarum , Microbiota , Adaptação Fisiológica , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Corynebacterium/crescimento & desenvolvimento , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Microbiota/fisiologia
2.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946575

RESUMO

Adverse environmental conditions are severely limiting the use of microorganisms in food systems, such as probiotic delivery, where low pH causes a rapid decrease in the survival of ingested bacteria, and mixed-culture fermentation, where stepwise changes and/or metabolites of individual microbial groups can hinder overall growth and production. In our study, model probiotic lactic acid bacteria (L. plantarum ATCC 8014, L. rhamnosus GG) and yeasts native to dairy mixed cultures (K. marxianus ZIM 1868) were entrapped in an optimized (cell, alginate and hardening solution concentration, electrostatic working parameters) Ca-alginate system. Encapsulated cultures were examined for short-term survival in the absence of nutrients (lactic acid bacteria) and long-term performance in acidified conditions (yeasts). In particular, the use of encapsulated yeasts in these conditions has not been previously examined. Electrostatic manufacturing allowed for the preparation of well-defined alginate microbeads (180-260 µm diameter), high cell-entrapment (95%) and viability (90%), and uniform distribution of the encapsulated cells throughout the hydrogel matrix. The entrapped L. plantarum maintained improved viabilities during 180 min at pH 2.0 (19% higher when compared to the free culture), whereas, L. rhamnosus appeared to be less robust. The encapsulated K. marxianus exhibited double product yields in lactose- and lactic acid-modified MRS growth media (compared to an unfavorable growth environment for freely suspended cells). Even within a conventional encapsulation system, the pH responsive features of alginate provided superior protection and production of encapsulated yeasts, allowing several applications in lacto-fermented or acidified growth environments, further options for process optimization, and novel carrier design strategies based on inhibitor charge expulsion.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Hidrogéis/farmacologia , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Antibacterianos/química , Antifúngicos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Kluyveromyces/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Substâncias Protetoras/química
3.
Int J Biol Macromol ; 190: 86-92, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474052

RESUMO

This study investigated the changes in the structure of wheat starch after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae at different wheat bran dietary fiber (WBDF) levels. The results showed that WBDF was slightly resistant to the decrease in acidity within the fermentation system. The amylose content decreased from 32.12% to 19.92% (P < 0.05), amylose/amylopectin ratio decreased from 0.47 to 0.25 (P < 0.05), and relative crystallinity decreased from 12.17% to 9.40% (P < 0.05) in the samples containing WBDF compared with the control. Scanning electron microscopy showed more eroded starch as the WBDF level increased. Fourier-transform infrared spectroscopy revealed a decrease in the starch-hydrogen binding absorbance in the 3600-3000 cm-1 wavemumber; and the 1047/1022 and 995/1022 cm-1 data indicated an increase in the degree of order and degree of double helix of the samples containing WBDF. The results of the study might help understand the interaction between dietary fibers and starch during fermentation and guide the production of fermented high-fiber flour products.


Assuntos
Fibras na Dieta/farmacologia , Fermentação , Lactobacillus plantarum/fisiologia , Saccharomyces cerevisiae/fisiologia , Amido/química , Triticum/química , Amilopectina/análise , Amilose/análise , Fermentação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Difração de Raios X
4.
Biochem Biophys Res Commun ; 575: 73-77, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34461438

RESUMO

The general characteristics of the effect of surfactants on the activity of lysozyme were demonstrated. The kinetics of bacterial cell lysis is consistent with the Michaelis-Menten equation and the presence of surfactants does not shift the pH-optimum of activity. Surfactants do not change the Km value but instead, affect the Vmax value. The experimental dependencies are well described by theoretical equations, which assume three surfactant binding sites on the lysozyme molecule. The dependencies of the activity of lysozyme on the surfactant concentration are either a step type (i.e., a higher plateau becomes a lower plateau), or a dependency with a maximum and continuation of the curve in the form of a plateau but with an increase in the surfactant concentration. It can be assumed that there is a mechanism for the regulation of lysozyme activity by an unknown natural factor that has a suitable hydrophobic radical capable of binding to the surface of lysozyme.


Assuntos
Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Muramidase/metabolismo , Polissorbatos/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactobacillus plantarum/crescimento & desenvolvimento , Muramidase/isolamento & purificação , Ligação Proteica
5.
Sci Rep ; 11(1): 15893, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354117

RESUMO

A synbiotic containing Lactiplantibacillus plantarum [American Type Culture Collection (ATCC) strain identifier 202195] and fructooligosaccharide was reported to reduce the risk of sepsis in young infants in rural India. Here, the whole genome of two isolates of L. plantarum ATCC 202195, which were deposited to the ATCC approximately 20 years apart, were sequenced and analyzed to verify their taxonomic and strain-level identities, identify potential antimicrobial resistant genes and virulence factors, and identify genetic characteristics that may explain the observed clinical effects of L. plantarum ATCC 202195. Minimum inhibitory concentrations for selected antimicrobial agents were determined using broth dilution and gradient strip diffusion techniques. The two L. plantarum ATCC 202195 isolates were genetically identical with only three high-quality single nucleotides polymorphisms identified, and with an average nucleotide identity of 99.99%. In contrast to previously published reports, this study determined that each isolate contained two putative plasmids. No concerning acquired or transferable antimicrobial resistance genes or virulence factors were identified. Both isolates were sensitive to several clinically important antibiotics including penicillin, ampicillin and gentamicin, but resistant to vancomycin. Genes involved in stress response, cellular adhesion, carbohydrate metabolism and vitamin biosynthesis are consistent with features of probiotic organisms.


Assuntos
Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Antibacterianos/farmacologia , Genoma Bacteriano/efeitos dos fármacos , Genômica , Índia , Lactobacillus plantarum/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , Probióticos , Simbióticos , Fatores de Virulência/genética
6.
Sci Rep ; 11(1): 15288, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315963

RESUMO

Lactobacillus plantarum (renamed as Lactiplantibacillus plantarum) has been isolated from many sources but very rarely from rhizospheric soil. This is the first report on isolation and assessment of probiotic capabilities of L. plantarum strains isolated from rhizospheric soil. The isolates were confirmed by 16S rRNA gene sequencing and named as NS14, NS16 and NGG. All the isolates were evaluated for bile salt hydrolysis, hypocholestrolemic potential and probiotic attributes. Our results indicated that all the strains harboured bsh and showed in vitro cholesterol assimilation capabilities which increased when bile salts were also present in the culture medium. Also, all the strains remained viable at high temperatures and in the presence of NaCl, lysozyme, simulated gastric juice, bile salts and, exhibited auto- and co-aggregation capabilities. Additionally, L. plantarum strain NS14 survived in the presence of phenols, acidic environment (pH 2-3) and was resistant to many clinically relevant antibiotics. Since, L. plantarum NS14 exhibited most of the desirable and essential characteristics of a probiotic it should be further investigated as a potent probiotic with an additional benefit as a hypocholesterolemic biotherapeutic. Moreover, rhizosphere can be explored as a useful ecological niche for isolating microorganisms with biotechnological and probiotic potential.


Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos , Sequência de Aminoácidos , Hidrólise , Técnicas In Vitro , Lactobacillus plantarum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Homologia de Sequência de Aminoácidos
7.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608291

RESUMO

Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit health benefits in the consumer. Lactiplantibacillus plantarum strains display high survival during transit through the mammalian gastrointestinal tract and were shown to have health-promoting properties. Growth on the fructose polysaccharide inulin is relatively uncommon in L. plantarum, and in this study we describe FosE, a plasmid-encoded ß-fructosidase of L. plantarum strain Lp900 which has inulin-hydrolyzing properties. FosE contains an LPxTG-like motif involved in sortase-dependent cell wall anchoring but is also (partially) released in the culture supernatant. In addition, we examined the effect of diet supplementation with inulin on the intestinal persistence of Lp900 in adult male Wistar rats in diets with distinct calcium levels. Inulin supplementation in high-dietary-calcium diets significantly increased the intestinal persistence of L. plantarum Lp900, whereas this effect was not observed upon inulin supplementation of the low-calcium diet. Moreover, intestinal persistence of L. plantarum Lp900 was determined when provided as a probiotic (by itself) or as a synbiotic (i.e., in an inulin suspension) in rats that were fed unsupplemented diets containing the different calcium levels, revealing that the synbiotic administration increased bacterial survival and led to higher abundance of L. plantarum Lp900 in rats, particularly in a low-calcium-diet context. Our findings demonstrate that inulin supplementation can significantly enhance the intestinal delivery of L. plantarum Lp900 but that this effect strongly depends on calcium levels in the diet.IMPORTANCE Synbiotics combine probiotics with prebiotics to synergistically elicit a health benefit in the consumer. Previous studies have shown that prebiotics can selectively stimulate the growth in the intestine of specific bacterial strains. In synbiotic supplementations the prebiotics constituent could increase the intestinal persistence and survival of accompanying probiotic strain(s) and/or modulate the endogenous host microbiota to contribute to the synergistic enhancement of the health-promoting effects of the synbiotic constituents. Our study establishes a profound effect of dietary-calcium-dependent inulin supplementation on the intestinal persistence of inulin-utilizing L. plantarum Lp900 in rats. We also show that in rats on a low-dietary-calcium regime, the survival and intestinal abundance of L. plantarum Lp900 are significantly increased by administering it as an inulin-containing synbiotic. This study demonstrates that prebiotics can enhance the intestinal delivery of specific probiotics and that the prebiotic effect is profoundly influenced by the calcium content of the diet.


Assuntos
Cálcio da Dieta/farmacologia , Intestinos/microbiologia , Inulina/farmacologia , Lactobacillus plantarum , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dieta , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/crescimento & desenvolvimento , Masculino , Ratos Wistar , Simbióticos , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
8.
Food Chem ; 339: 127985, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920305

RESUMO

There is limited research focusing on the effects of human gut microbiota on the oral bioaccessibility and intestinal absorption of pesticide residues in food. In the present study, we use a modified setup of the Simulator of the Human Intestinal Microbial Ecosystem for the determination of pesticide residue bioaccessibility in Chaenomeles speciosa, and a Caco-2 cell model of human intestinal absorption. Results showed that gut microbiota played a dual role based their effects on contaminant release and metabolism in the bioaccessibility assay, and Lactobacillus plantarum was one of key bacterial species in the gut microbiota that influenced pesticide stability significantly. The addition of L. plantarum to the system reduced the relative amounts (by 11.40-86.51%) of six pesticides. The interaction between the food matrix and human gut microbiota led to different absorption rates, and the barrier effects increased with an increase in incubation time.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Praguicidas/farmacologia , Rosaceae/química , Bactérias/metabolismo , Células CACO-2 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/isolamento & purificação , Neonicotinoides/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/metabolismo , Nitrocompostos/farmacologia , Compostos Organotiofosforados/metabolismo , Compostos Organotiofosforados/farmacologia , Praguicidas/química , Praguicidas/metabolismo , Rosaceae/metabolismo , Tiametoxam/metabolismo , Tiametoxam/farmacologia
9.
Food Chem ; 338: 128134, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091996

RESUMO

Lactic acid bacteria can improve their resistance to adverse environments through the formation of biofilm. This study found that adding different buffer salts in culture medium had a great impact on the freeze-drying survival rate of the Lactobacillus plantarum LIP-1, which could be linked to biofilm formation. Transcriptome data showed that potassium ions in buffer salt increased the expression of the luxS gene in the LuxS/autoinducer-2 (AI-2) quorum sensing system and increase synthesis of the quorum sensing signal AI-2. The AI-2 signal molecules up-regulated the cysE gene, which helps to promote biofilm formation. By adding a biofilm inhibitor, d-galactose, and performing a real-time quantitative polymerase chain reaction experiment, we found that d-galactose could down-regulated the luxS and cysE genes, reduced biofilm formation, and decreased the freeze-drying survival rate. The results of this study showed that promoting biofilm formation using appropriate buffer salts may lead to better freeze-drying survival rates.


Assuntos
Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Liofilização/métodos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Sais/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Soluções Tampão , Liases de Carbono-Enxofre/genética , Relação Dose-Resposta a Droga , Homosserina/análogos & derivados , Homosserina/metabolismo , Lactobacillus plantarum/citologia , Lactobacillus plantarum/metabolismo , Lactonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Taxa de Sobrevida
10.
Arch Microbiol ; 203(1): 183-191, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803345

RESUMO

In this study, the presence of plasmids responsible for carbohydrate fermentation and antibiotic resistance and the stability of these plasmids in artificial gastric juice were investigated in 20 Lactobacillus plantarum strains with probiotic properties. Plasmid curing was performed with novobiocin, acriflavine and elevated incubation temperature to identify plasmids encoded with carbohydrate fermentation and antibiotic resistance genes and to compare them with artificial gastric juice. Plasmid profiling of the strains revealed that 100% of the strains were harbouring plasmids in varying sizes and numbers. The plasmid number of the potential probiotic strains ranged between 1 and 4, and the plasmid size ranged between 5.779 and 16.138 kb. The potential probiotic strains could not survive in the artificial gastric juice at pH 2.0. Although the strains maintained their viability in an artificial gastric juice at pH 2.5 and 3.0, and their derivatives lost their plasmids at a high rate (100%). Similarly, high levels of cured derivatives were obtained with 8 µg/mL novobiocin and 100 µg/mL acriflavine applications, and 24 h incubation at 43 °C. All the experiments were also performed to compare with two L. plantarum-type strains containing plasmids responsible for tetracycline and tetracycline + erythromycin resistances. Artificial gastric juice and other plasmid curing treatments caused a high-frequency loss in the antibiotic resistances of type strains. Determining plasmid stability in artificial gastric juice is a novel approach. Plasmid stability in the gastrointestinal tract is important for maintaining the plasmid-encoded probiotic properties.


Assuntos
Acriflavina/farmacologia , Farmacorresistência Bacteriana/genética , Suco Gástrico/microbiologia , Lactobacillus plantarum/efeitos dos fármacos , Novobiocina/farmacologia , Antibacterianos/farmacologia , Fermentação , Suco Gástrico/efeitos dos fármacos , Temperatura Alta , Lactobacillus plantarum/genética , Plasmídeos/genética , Probióticos , Resistência a Tetraciclina/genética
11.
Benef Microbes ; 11(8): 791-802, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191777

RESUMO

Lipoteichoic acid (LTA) is a key component of the cell wall of most Gram-positive bacteria and plays many structural and functional roles. In probiotic lactobacilli, the function of LTA in mediating bacteria/host cross-talk has been evidenced and it has been postulated that, owing to its anionic nature, LTA may play a role in toxic metal sequestration by these bacteria. However, studies on this last aspect employing strains unable to synthesise LTA are lacking. We have inactivated the LTA polymerase encoding gene ltaS in two different Lactobacillus plantarum strains. Analysis of LTA contents in wild-type and ltaS mutant strains corroborated the role of this gene as a major contributor to LTA synthesis in L. plantarum. The mutant strains displayed strain-dependent anomalous cell morphologies that resulted in elongated or irregular cells with aberrant septum formation. They also exhibited higher sensitivity to several stresses (osmotic and heat) and to antimicrobials that target the cell wall. The toxicity of inorganic [(Hg(II)] and organic mercury (methyl-Hg) was also increased upon ltaS mutation in a strain-dependent manner. However, the mutant strains showed 0 to 50% decrease in their capacity of Hg binding compared to their corresponding parental strains. This result suggests a partial contribution of LTA to Hg binding onto the cell surface that was dependent on the strain and the Hg form.


Assuntos
Parede Celular/química , Farmacorresistência Bacteriana/genética , Lactobacillus plantarum/metabolismo , Lipopolissacarídeos/metabolismo , Compostos de Mercúrio/química , Compostos de Mercúrio/toxicidade , Ácidos Teicoicos/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Probióticos/metabolismo , Estresse Fisiológico/fisiologia , Ácidos Teicoicos/biossíntese
12.
Biocontrol Sci ; 25(3): 167-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32938846

RESUMO

For the elucidation of the mechanism underlying the photocatalytic bactericidal activity of titanium dioxide (TiO2), we focused on the peptidoglycan layer, a component of the bacterial cell wall. The effect of this layer on the photocatalytic bactericidal activity of TiO2 was evaluated by determining the survival rates of Lactobacillus plantarum (intact cells) and its protoplast cells. Mesoplasma florum, which does not originally possess the peptidoglycan layer, was also used. Our results revealed that the survival rates of the intact cells were lower than those of the protoplast cells. In addition, there was no significance between the survival rates of M. florum cells and the protoplast cells of L. plantarum. It was suggested that the presence of the peptidoglycan layer increases the bactericidal effect by the photocatalysis.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptidoglicano/farmacologia , Titânio/farmacologia , Catálise/efeitos da radiação , Entomoplasmataceae/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Titânio/química
13.
Probiotics Antimicrob Proteins ; 12(4): 1451-1458, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32865760

RESUMO

Antioxidant activity is one of the important probiotic characteristics for lactic acid bacteria including Lactobacillus plantarum, which is used for food fermentation or as a probiotic supplement. L. plantarum FLPL05 is a novel strain originally isolated from a healthy elderly individual of longevity. The organism has been demonstrated to exhibit high antioxidant property. However, there are limited genomic insights into the antioxidant properties of this organism. In this study, we performed whole-genome analysis regarding its antioxidant property. L. plantarum FLPL05 exhibited higher antioxidant activity compared with that of L. plantarum strains ATCC14917, ATCC8014, and WCFS1. The antioxidant capacity of L. plantarum FLPL05 was genetically linked to its antioxidant system, i.e., glutathione and thioredoxin involved in global regulation of defense against hydrogen peroxide challenge. L. plantarum FLPL05 was further examined for its antioxidant potential in D-Gal-induced aging mice and exhibited a significant increase in the activity of serum glutathione peroxidase (GSH-PX) and a decrease in the level of malondialdehyde (MDA). Moreover, our analyses exhibited a complete gene cluster including plnA, plnB, plnC, plnD, plnE, plnF, plnG, plnH, plnI, plnJ, plnK, plnM, plnN, plnO, plnP, plnQ, plnST, plnU, plnV, plnW, plnX, and plnY for production of bacteriocin. Our results suggest that L. plantarum FLPL05 could be a probiotic candidate.


Assuntos
Envelhecimento/genética , Antioxidantes/metabolismo , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Lactobacillus plantarum/genética , Probióticos/farmacologia , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Bacteriocinas/biossíntese , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Galactose/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HT29 , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Família Multigênica , Probióticos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824081

RESUMO

In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e., Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. All tested compounds showed antimicrobial effects against S. aureus, and almost all against E. coli and C. perfringens. For L. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest for S. aureus and the weakest for C. perfringens. For S. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results with S. aureus showed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. For E. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. For C. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought.


Assuntos
Antibacterianos/farmacologia , Clostridiales/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Taninos Hidrolisáveis/farmacologia , Lactobacillus plantarum/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Clostridiales/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
15.
BMC Microbiol ; 20(1): 239, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753060

RESUMO

BACKGROUND: Probiotics have been reported to reduce total cholesterol levels in vitro, but more evidence is needed to determine the clinical relevance of this activity. Chinese traditional fermented pickles are a good source of lactic acid bacteria. Therefore, pickle samples were collected for screening lactic acid bacteria based on their ability to survive stresses encountered during gastrointestinal passage and cholesterol reducing potency. RESULTS: Seventy five lactic acid bacteria strains were isolated from 22 fermented pickles. From these bacteria, Lactobacillus plantarum E680, showed the highest acid (85.25%) and bile tolerance (80.79%). It was sensitive to five of the eight antibiotics tested, inhibited the growth of four pathogenic bacteria, and reduced the total cholesterol level by 66.84% in broth culture. In vivo testing using hypercholesterolemic mice fed high-fat emulsion, independent of food intake, found that L. plantarum E680 suppressed body weight gain and reduced total cholesterol and low-density lipoprotein cholesterol levels, with no effect on high-density lipoprotein cholesterol. CONCLUSIONS: Chinese traditional fermented pickles are a good source for probiotics. L. plantarum E680, isolated from pickles, was acid and bile tolerant, sensitive to antibiotics, and reduced cholesterol levels both in vitro and in vivo. Based on these results, L. plantarum E680 may have potential as a novel probiotic for the development of cholesterol-lowering functional food.


Assuntos
Hipercolesterolemia/tratamento farmacológico , Lactobacillus plantarum/fisiologia , Probióticos , Ácidos/metabolismo , Animais , Antibacterianos/farmacologia , Antibiose , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Peso Corporal/efeitos dos fármacos , Cucumis sativus , Alimentos Fermentados/microbiologia , Hipercolesterolemia/sangue , Hipercolesterolemia/patologia , Lactobacillales/efeitos dos fármacos , Lactobacillales/isolamento & purificação , Lactobacillales/fisiologia , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/isolamento & purificação , Lipídeos/sangue , Camundongos , Probióticos/administração & dosagem , Probióticos/farmacologia
16.
J Nutr ; 150(8): 2077-2088, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542361

RESUMO

BACKGROUND: The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. OBJECTIVES: We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. METHODS: We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2'-fucosyllactose (2'-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarumWCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin ß-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. RESULTS: Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0-94.9% by shear force (P <0.001). The presence of L. plantarumWCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarumWCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). CONCLUSIONS: 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarumWCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Lactobacillus plantarum/efeitos dos fármacos , Leite Humano/química , Oligossacarídeos/farmacologia , Células CACO-2 , Células Epiteliais/fisiologia , Humanos , Lactobacillus plantarum/fisiologia , Peristaltismo
17.
Food Chem ; 326: 126849, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32447159

RESUMO

Buffer salts are often added to culture medium to promote bacterial growth. However, we found that buffer salts can improve the freeze-drying survival rate. In this experiment, the mechanisms for the effects of different buffer salts on the survival rate of freeze-dried strains were examined. The results showed that buffer salts had important effects on the freeze-drying survival rate of L. plantarum LIP-1 that were related to changes in fatty acid composition. Different buffer salts affected the expression of fatty acid metabolic genes. A new gene cluster that regulates fatty acid metabolism and synthesis was discovered. Potassium ions in buffer salts upregulated the trkA gene and lysR-type transcription factor, and then upregulated the expression of fatty acid synthesis-related acc and fab family genes. These genes help to extend the fatty acid carbon chain and promote the unsaturated fatty acids content, which improves cell membrane fluidity and improves resistance to freeze-drying.


Assuntos
Lactobacillus plantarum/metabolismo , Proteoma/metabolismo , Sais/farmacologia , Transcriptoma , Ácidos Graxos/metabolismo , Liofilização , Lactobacillus plantarum/efeitos dos fármacos , Fluidez de Membrana
18.
Nutrients ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326187

RESUMO

The impact of acrylamide (AA) on microorganisms is still not clearly understood as AA has not induced mutations in bacteria, but its epoxide analog has been reported to be mutagenic in Salmonella strains. The aim of the study was to evaluate whether AA could influence the growth and viability of beneficial intestinal bacteria. The impact of AA at concentrations of 0-100 µg/mL on lactic acid bacteria (LAB) was examined. Bacterial growth was evaluated by the culture method, while the percentage of alive, injured, and dead bacteria was assessed by flow cytometry after 24 h and 48 h of incubation. We demonstrated that acrylamide could influence the viability of the LAB, but its impact depended on both the AA concentration and the bacterial species. The viability of probiotic strain Lactobacillus acidophilus LA-5 increased while that of Lactobacillus plantarum decreased; Lactobacillus brevis was less sensitive. Moreover, AA influenced the morphology of L. plantarum, probably by blocking cell separation during division. We concluded that acrylamide present in food could modulate the viability of LAB and, therefore, could influence their activity in food products or, after colonization, in the human intestine.


Assuntos
Acrilamida/efeitos adversos , Acrilamida/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Levilactobacillus brevis/efeitos dos fármacos , Acrilamida/análise , Análise de Alimentos , Manipulação de Alimentos , Produtos Finais de Glicação Avançada , Humanos , Lactobacillus acidophilus/crescimento & desenvolvimento , Levilactobacillus brevis/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento
19.
PLoS One ; 15(4): e0231268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275691

RESUMO

Despite increasing research on the gut-skin axis, there is a lack of comprehensive studies on the improvement of skin health through the regulation of the intestinal condition in humans. In this study, we investigated the benefits of Lactobacillus plantarum HY7714 (HY7714) consumption on skin health through its modulatory effects on the intestine and ensuing immune responses. HY7714 consumption led to differences in bacterial abundances from phylum to genus level, including increases in Actinobacteria followed by Bifidobacterium and a decrease in Proteobacteria. Additionally, HY7714 significantly ameliorated inflammation by reducing matrix metallopeptidases (MMP-2 and MMP-9), zonulin, and calprotectin in plasma, all of which are related to skin and intestinal permeability. Furthermore, RNA-seq analysis revealed its efficacy at restoring the integrity of the gut barrier by regulating gene expression associated with the extracellular matrix and immunity. This was evident by the upregulation of IGFBP5, SERPINE1, EFEMP1, COL6A3, and SEMA3B and downregulation of MT2A, MT1E, MT1X, MT1G, and MT1F between TNF- α and TNF- α plus HY7714 treated Caco-2 cells. These results propose the potential mechanistic role of HY7714 on skin health by the regulation of the gut condition.


Assuntos
Intestinos/microbiologia , Lactobacillus plantarum/fisiologia , Pele/microbiologia , Adulto , Idoso , Biodiversidade , Biomarcadores/sangue , Células CACO-2 , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Ontologia Genética , Humanos , Inflamação/patologia , Lactobacillus plantarum/efeitos dos fármacos , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
20.
Benef Microbes ; 11(2): 163-173, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32131607

RESUMO

This study reports the probiotic attributes of Lactobacillus strains isolated from chicken faeces and mainly their capabilities to prevent infectious diseases and improve chicken production performance. Thus, 22 Lactobacillus strains were isolated from 50 chickens' faeces samples and assessed for their resistance to gastric acidity (pH 0.5, 1, 1.5, 2 and 2.5), tolerance to bile salts, adherence to broiler intestinal cells and antibacterial activity. These in vitro screening analyses revealed Lactobacillus plantarum S22 and L. plantarum S27 as the only strains capable to survive at pH 2.0 in MRS broth (log10 cfu/ml=5.02 and 8.46 log respectively), while the remaining strains were not resistant to pH≤2.0. Similarly, 21 strains were resistant to bile at 0.5% (log10 cfu/ml=0.09-3.32 log), but only Lactobacillus fermentum S26, L. plantarum S22 and L. plantarum S27 were able to grow in the presence of 0.1% (w/v) bile (8.23±0.15; 8.39±0.17 and 8.57±0.07 respectively). Most of these isolates (19/22) were active against Escherichia coli ATCC 25922, E. coli SL2016 and Salmonella enterica CIP 81-3. Lactic acid is likely the main antibacterial compound produced since the neutralised supernatant was devoid of any antibacterial activity. In vitro characterisation of these 22 novel strains, based on the aforementioned criteria revealed L. plantarum S27 as the most suitable strain for in vivo analyses. To this end, this strain was assessed for its sensitivity to different antibiotics and adhesion to poultry intestinal cells to ascertain it probiotic attributes. The administration of L. plantarum S27 to the chicks at 109 cfu/ml permitted to improve the animal food intake and weight. Taken together, data from in vitro and in vivo analyses indicated that L. plantarum S27 might be a worthy probiotic for chickens rather than adding antibiotics to animals feeding.


Assuntos
Fezes/microbiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus/isolamento & purificação , Probióticos/administração & dosagem , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Ácidos e Sais Biliares/química , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Meios de Cultura/química , Células Epiteliais/microbiologia , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Intestinos/citologia , Ácido Láctico/metabolismo , Lactobacillus/classificação , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA