Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2342: 809-823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272718

RESUMO

Often it may be convenient and efficient to address multiple research questions with a single experiment. In many instances, however, the best approach is to design the experiment to address one question at a time. The design of enzyme mapping experiments is discussed in this chapter, focusing on considerations pertinent to the study of aldehyde oxidase (AO) vs. cytochrome P450 metabolism. Specifically, a case is presented in which reduced glutathione (GSH) was included in an experiment with human liver S9 fraction to trap reactive metabolites generated from cytochrome P450-mediated metabolism of lapatinib and its O-dealkylated metabolite, M1 (question 1). The AO inhibitor hydralazine was included in this experiment to investigate the involvement of AO-mediated metabolism of M1 (question 2). The presence of GSH was found to interfere with the inhibitory activity of hydralazine. Consideration of the time-dependent nature of hydralazine inhibitory activity toward AO when designing this experiment could have predicted the potential for GSH to interfere with hydralazine. This case underscores the importance of clearly identifying the research question, tailoring the experimental protocol to answer that question, and then meticulously considering how the experimental conditions could influence the results, particularly if attempting to address multiple questions with a single experiment.


Assuntos
Aldeído Oxidase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Hidralazina/farmacocinética , Lapatinib/farmacocinética , Ativação Metabólica , Interações Medicamentosas , Hepatócitos/citologia , Humanos , Microssomos Hepáticos/enzimologia , Oxirredução , Projetos de Pesquisa , Fatores de Tempo
2.
Breast Cancer Res ; 23(1): 30, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663560

RESUMO

BACKGROUND: Poly (ADP-ribose)-polymerase inhibitors (PARPi) have been approved for cancer patients with germline BRCA1/2 (gBRCA1/2) mutations, and efforts to expand the utility of PARPi beyond BRCA1/2 are ongoing. In preclinical models of triple-negative breast cancer (TNBC) with intact DNA repair, we have previously shown an induced synthetic lethality with combined EGFR inhibition and PARPi. Here, we report the safety and clinical activity of lapatinib and veliparib in patients with metastatic TNBC. METHODS: A first-in-human, pilot study of lapatinib and veliparib was conducted in metastatic TNBC (NCT02158507). The primary endpoint was safety and tolerability. Secondary endpoints were objective response rates and pharmacokinetic evaluation. Gene expression analysis of pre-treatment tumor biopsies was performed. Key eligibility included TNBC patients with measurable disease and prior anthracycline-based and taxane chemotherapy. Patients with gBRCA1/2 mutations were excluded. RESULTS: Twenty patients were enrolled, of which 17 were evaluable for response. The median number of prior therapies in the metastatic setting was 1 (range 0-2). Fifty percent of patients were Caucasian, 45% African-American, and 5% Hispanic. Of evaluable patients, 4 demonstrated a partial response and 2 had stable disease. There were no dose-limiting toxicities. Most AEs were limited to grade 1 or 2 and no drug-drug interactions noted. Exploratory gene expression analysis suggested baseline DNA repair pathway score was lower and baseline immunogenicity was higher in the responders compared to non-responders. CONCLUSIONS: Lapatinib plus veliparib therapy has a manageable safety profile and promising antitumor activity in advanced TNBC. Further investigation of dual therapy with EGFR inhibition and PARP inhibition is needed. TRIAL REGISTRATION: ClinicalTrials.gov , NCT02158507 . Registered on 12 September 2014.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacocinética , Gerenciamento Clínico , Monitoramento de Medicamentos , Feminino , Humanos , Lapatinib/administração & dosagem , Lapatinib/farmacocinética , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Projetos Piloto , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem
3.
AAPS PharmSciTech ; 22(1): 40, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417081

RESUMO

Multiple considerations are essential to address the main challenges of dose flexibility and patient adherence in pediatric drug development, particularly for oncology. Mini-tablets, 2 mm in diameter, were manufactured using a rotary tablet press at a set weight and compression force level. The physical characteristics were consistent for mini-tablets throughout multiple batches. Polymeric amorphous solid dispersion (ASD) was used as a solubility enhancing technique to increase solubility and exposure of lapatinib. The effects of the polymeric excipient and disintegrant on drug release properties were investigated. While having a lower apparent solubility and shorter storage stability, hydroxypropyl methylcellulose E3 (HPMCE3) formulation provided a higher percentage of drug release compared to hydroxypropyl methylcellulose phthalate (HPMCP). The intermolecular interaction within the ASD system plays a role in the level of apparent solubility, physical stability, and concentration of free drug available in an aqueous environment. Juvenile porcine models at two different weight groups (10 and 20 kg) were used to obtain the pharmacokinetic parameters of lapatinib. While the dose-normalized exposure of drug was found to be lower in the pig study, the dose flexibility of mini-tablets enabled a constant dose level to be administered to achieve equivalent plasma concentration-time profiles between the two groups. This linear scaling in the amount of drug in pediatric and adult population has also been observed in human clinical studies.


Assuntos
Lapatinib/química , Animais , Criança , Composição de Medicamentos , Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lapatinib/farmacocinética , Solubilidade , Suínos , Comprimidos/química
4.
Cancer Chemother Pharmacol ; 85(5): 917-930, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32274564

RESUMO

PURPOSE: KRAS oncogene mutations cause sustained signaling through the MAPK pathway. Concurrent inhibition of MEK, EGFR, and HER2 resulted in complete inhibition of tumor growth in KRAS-mutant (KRASm) and PIK3CA wild-type tumors, in vitro and in vivo. In this phase I study, patients with advanced KRASm and PIK3CA wild-type colorectal cancer (CRC), non-small cell lung cancer (NSCLC), and pancreatic cancer, were treated with combined lapatinib and trametinib to assess the recommended phase 2 regimen (RP2R). METHODS: Patients received escalating doses of continuous or intermittent once daily (QD) orally administered lapatinib and trametinib, starting at 750 mg and 1 mg continuously, respectively. RESULTS: Thirty-four patients (16 CRC, 15 NSCLC, three pancreatic cancers) were enrolled across six dose levels and eight patients experienced dose-limiting toxicities, including grade 3 diarrhea (n = 2), rash (n = 2), nausea (n = 1), multiple grade 2 toxicities (n = 1), and aspartate aminotransferase elevation (n = 1), resulting in the inability to receive 75% of planned doses (n = 2) or treatment delay (n = 2). The RP2R with continuous dosing was 750 mg lapatinib QD plus 1 mg trametinib QD and with intermittent dosing 750 mg lapatinib QD and trametinib 1.5 mg QD 5 days on/2 days off. Regression of target lesions was seen in 6 of the 24 patients evaluable for response, with one confirmed partial response in NSCLC. Pharmacokinetic results were as expected. CONCLUSION: Lapatinib and trametinib could be combined in an intermittent dosing schedule in patients with manageable toxicity. Preliminary signs of anti-tumor activity in NSCLC have been observed and pharmacodynamic target engagement was demonstrated.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Lapatinib , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas , Pirimidinonas , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Lapatinib/administração & dosagem , Lapatinib/efeitos adversos , Lapatinib/farmacocinética , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Farmacogenética , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Piridonas/farmacocinética , Pirimidinonas/administração & dosagem , Pirimidinonas/efeitos adversos , Pirimidinonas/farmacocinética , Resultado do Tratamento
5.
Invest New Drugs ; 38(3): 574-583, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31177402

RESUMO

Background Lapatinib is a small-molecule tyrosine kinase inhibitor of human epidermal receptor 2 (HER2) and EGFR that has currently been approved for the treatment of HER2-positive advanced and metastatic breast cancer (BC). The ATP-binding cassette (ABC) family of transporters includes P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2), which substantially restrict the penetration of drugs, including chemotherapeutics, through the blood-brain barrier and blood-cerebrospinal fluid barrier. The aim of this study was to investigate the effects of elacridar, an ABCB1 and ABCG2 inhibitor, on the brain and cerebrospinal fluid uptake of lapatinib. Methods Rats were divided into two groups: one group received 5 mg/kg elacridar and 100 mg/kg lapatinib (an experimental group), and the other group received 100 mg/kg lapatinib (a control group). Lapatinib concentrations in the blood plasma (BP), cerebrospinal fluid (CSF) and brain tissue (BT) were measured by liquid chromatography coupled with tandem mass spectrometry. Results Elacridar significantly increased lapatinib penetration into the CSF and BT (Cmax increase of 136.4% and 54.7% and AUC0-∞ increase of 53.7% and 86.5%, respectively). The Cmax of lapatinib in BP was similar in both experimental groups (3057.5 vs. 3257.5 ng/mL, respectively). Conclusion This study showed that elacridar influenced the pharmacokinetics of lapatinib. The inhibition of ABCB1 and ABCG2 transporters by elacridar substantially enhanced the penetration of lapatinib into the CSF and BT. The blocking of protein transporters could become indispensable in the treatment of patients with breast cancer and brain metastases.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Lapatinib/farmacocinética , Tetra-Hidroisoquinolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Masculino , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
6.
Cancer Biol Ther ; 21(3): 223-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31709896

RESUMO

Introduction: Transporters comprising the blood-brain barrier complicate delivery of many therapeutics to the central nervous system. The present study ascertained whether the natural product botryllamide G is viable for in vivo inhibition of ABCG2 using lapatinib as a probe for ABCB1 and ABCG2-mediated efflux from the brain. Methods: Wild-type and Mdr1a/Mdr1b (-/-) mice were treated with botryllamide G and lapatinib ("doublet therapy"), and while a separate cohort of wild-type mice was treated with botryllamide, tariquidar and lapatinib ("triplet therapy"). Results: Botryllamide G demonstrates biphasic elimination with a rapid distribution, decreasing below the in vitro IC50 of 6.9 µM within minutes, yet with a relatively slower terminal half-life (4.6 h). In Mdr1a/Mdr1b (-/-) mice, doublet therapy resulted in a significant increase in brain lapatinib AUC at 8 h (2058 h*ng/mL vs 4007 h*ng/mL; P = .031), but not plasma exposure (P = .15). No significant differences were observed after 24 h. Lapatinib brain exposure was greater through 1 h when wild-type mice were administered triplet therapy (298 h*pg/mg vs 120 h*pg/mg; P < .001), but the triplet decreased brain AUC through 24 h vs. mice administered lapatinib alone (2878 h*pg/mg vs 4461hr*ng/mL; P < .001) and did not alter the brain:plasma ratio. Conclusions: In summary, the ABCG2 inhibitor, botryllamide G, increases brain exposure to lapatinib in mice lacking Abcb1, although the combination of botryllamide G and tariquidar increases brain exposure in wild-type mice only briefly (1 h). Additional research is needed to find analogs of this compound that have better pharmacokinetics and pharmacodynamic effects on ABCG2 inhibition.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Acrilamidas/farmacologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lapatinib/farmacocinética , Fenóis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Lapatinib/administração & dosagem , Lapatinib/metabolismo , Masculino , Camundongos , Camundongos Knockout , Distribuição Tecidual , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
7.
Drug Metab Dispos ; 47(11): 1257-1269, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492693

RESUMO

Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Lapatinib/farmacocinética , Ativação Metabólica , Adulto , Idoso , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Genótipo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade
8.
Mol Pharm ; 16(9): 3938-3947, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31335153

RESUMO

The characterization of intestinal dissolution of poorly soluble drugs represents a key task during the development of both new drug candidates and drug products. The bicarbonate buffer is considered as the most biorelevant buffer for simulating intestinal conditions. However, because of its complex nature, being the volatility of CO2, it has only been rarely used in the past. The aim of this study was to investigate the effect of a biorelevant bicarbonate buffer on intestinal supersaturation and precipitation of poorly soluble drugs using a gastrointestinal (GI) transfer model. Therefore, the results of ketoconazole, pazopanib, and lapatinib transfer model experiments using FaSSIFbicarbonate were compared with the results obtained using standard FaSSIFphosphate. Additionally, the effect of hydroxypropyl methylcellulose acetate succinate (HPMCAS) as a precipitation inhibitor was investigated in both buffer systems and compared to rat pharmacokinetic (PK) studies with and without coadministration of HPMCAS as a precipitation inhibitor. While HPMCAS was found to be an effective precipitation inhibitor for all drugs in FaSSIFphosphate, the effect in FaSSIFbicarbonate was much less pronounced. The PK studies revealed that HPMCAS did not increase the exposure of any of the model compounds significantly, indicating that the transfer model employing bicarbonate-buffered FaSSIF has a better predictive power compared to the model using phosphate-buffered FaSSIF. Hence, the application of a bicarbonate buffer in a transfer model set-up represents a promising approach to increase the predictive power of this in vitrotool and to contribute to the development of drug substances and drug products in a more biorelevant way.


Assuntos
Bicarbonatos/química , Bicarbonatos/farmacologia , Precipitação Química/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Absorção Gastrointestinal/fisiologia , Modelos Biológicos , Administração Oral , Animais , Soluções Tampão , Feminino , Trato Gastrointestinal , Concentração de Íons de Hidrogênio , Indazóis , Cetoconazol/administração & dosagem , Cetoconazol/sangue , Cetoconazol/química , Cetoconazol/farmacocinética , Lapatinib/administração & dosagem , Lapatinib/sangue , Lapatinib/química , Lapatinib/farmacocinética , Metilcelulose/análogos & derivados , Metilcelulose/farmacologia , Fosfatos/química , Pirimidinas/administração & dosagem , Pirimidinas/sangue , Pirimidinas/química , Pirimidinas/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Sulfonamidas/administração & dosagem , Sulfonamidas/sangue , Sulfonamidas/química , Sulfonamidas/farmacocinética
9.
J Clin Pharmacol ; 59(10): 1379-1383, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074516

RESUMO

Lapatinib, a tyrosine kinase inhibitor, is approved for the treatment of breast cancer. The literature shows that it is metabolized by CYP3A4 and eliminated predominantly (>90%) by the fecal route, with minimal (<2%) renal elimination in healthy subjects (dose of 250 mg); in cancer patients, renal elimination is minimal at therapeutic doses. For nonrenally cleared drugs, while there is ample evidence of pharmacokinetic alterations secondary to renal impairment-induced effects on drug metabolizing enzymes and/or transporters, the effect of end-stage renal disease (ESRD) on lapatinib pharmacokinetics has not been determined. Rather, as stated in the drug's label, the expectation is lack of effect of renal impairment on lapatinib pharmacokinetics based on its minimal renal elimination. The current report addresses this gap with pharmacokinetic data (obtained in a 1-way drug interaction study) in ESRD patients (n = 11) on maintenance hemodialysis and compared with published data in 37 healthy subjects in 3 separate studies. Following a 250-mg oral dose in ESRD patients, the median tmax was 3.0 hours, and geometric mean (95%CI) values for Cmax , AUCinf , and t1/2 were 349 ng/mL (245-499 ng/mL), 4410 ng·h/mL (2960-6580 ng·h/mL), and 14.8 hours (9.7-22.5 hours), respectively. These parameters approximated published values in healthy subjects and demonstrated that renal impairment and hemodialysis did not affect lapatinib pharmacokinetics. The results of the present study in this renally impaired population, the only such information available to date, support the drug's label and are valuable in view of the recognized difficulties in enrolling organ-impaired patients in oncology trials.


Assuntos
Falência Renal Crônica/metabolismo , Lapatinib/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Insuficiência Renal/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diálise Renal/métodos , Adulto Jovem
10.
Eur J Med Chem ; 176: 393-409, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125894

RESUMO

Novel substituted purine isosters, were designed and synthesized as potential inhibitors of the Epidermal Growth Factor Receptor (EGFR). The compounds were rationally designed through bioisosteric replacement of the central quinazoline core of lapatinib, an approved drug that inhibits both EGFR and HER2, another important member of this family of receptors. The new target molecules were evaluated as inhibitors of receptor phosphorylation at the cellular level, for their direct inhibitory action on the intracellular receptor kinase domain and for their cytotoxicity against the non-small cell lung cancer cell line A549 and breast cancer HCC1954, cell lines which are associated with overexpression of EGFR and HER2, respectively. The most potent derivatives were further studied for their cellular uptake levels and in vivo pharmacokinetic properties. One compound (23) displayed a noteworthy pharmacokinetic profile, and higher intracellular accumulation in comparison to lapatinib in the A549 cells, possibly due to its higher lipophilicity. This lead compound (23) was assessed for its efficacy in an EGFR positive xenograft model, where it successfully inhibited tumor growth, with a similar efficacy with that of lapatinib and with minimal phenotypic toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Lapatinib/análogos & derivados , Lapatinib/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Domínio Catalítico , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib/síntese química , Lapatinib/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Purinas/síntese química , Purinas/química , Purinas/farmacocinética , Receptor ErbB-2/química
11.
Invest New Drugs ; 36(5): 819-827, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29464465

RESUMO

Lapatinib is a tyrosine kinase inhibitor used for the treatment of breast cancer. Paracetamol is an analgesic commonly applied to patients with mild or moderate pain and fever. Cancer patients are polymedicated, which involves high risk of drug interactions during therapy. The aim of the study was to assess the interaction between lapatinib and paracetamol in rats. The rats were divided into three groups of eight animals in each. One group received lapatinib + paracetamol (IL + PA), another group received lapatinib (IIL), whereas the last group received paracetamol (IIIPA). A single dose of lapatinib (100 mg/kg b.w.) and paracetamol (100 mg/kg b.w.) was administered orally. Plasma concentrations of lapatinib, paracetamol and its metabolites - glucuronide and sulphate, were measured with the validated HPLC-MS/MS method and HPLC-UV method, respectively. The pharmacokinetic parameters of both drugs were calculated using non-compartmental methods. The co-administration of lapatinib and paracetamol increased the area under the plasma concentration-time curve (AUC) and the maximum concentration (Cmax) of lapatinib by 239.6% (p = 0.0030) and 184% (p = 0.0011), respectively. Lapatinib decreased the paracetamol AUC0-∞ by 48.8% and Cmax by 55.7%. In the IL + PA group the Cmax of paracetamol glucuronide was reduced, whereas the Cmax of paracetamol sulphate was higher than in the IIIPA group. Paracetamol significantly affected the enhanced plasma exposure of lapatinib. Additionally, lapatinib reduced the concentrations of paracetamol. The co-administration of lapatinib decreased the paracetamol glucuronidation but increased the sulphation. The findings of this study may be of clinical relevance to patients requiring analgesic therapy.


Assuntos
Acetaminofen/farmacocinética , Analgésicos não Narcóticos/farmacocinética , Antineoplásicos/farmacocinética , Lapatinib/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Acetaminofen/sangue , Administração Oral , Analgésicos não Narcóticos/sangue , Animais , Antineoplásicos/sangue , Interações Medicamentosas , Glucuronídeos/sangue , Lapatinib/sangue , Masculino , Inibidores de Proteínas Quinases/sangue , Ratos Wistar , Sulfatos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA