Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1380289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868298

RESUMO

The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.


Assuntos
Antibacterianos , Mel , Infecções Estafilocócicas , Staphylococcus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Fenótipo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Animais , Leptospermum/química , Testes de Sensibilidade Microbiana
2.
New Phytol ; 242(5): 2270-2284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532557

RESUMO

Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Manuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a manuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.


Assuntos
Di-Hidroxiacetona , Regulação da Expressão Gênica de Plantas , Leptospermum , Néctar de Plantas , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Néctar de Plantas/metabolismo , Di-Hidroxiacetona/metabolismo , Leptospermum/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Genes de Plantas , Genótipo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338460

RESUMO

A rapid procedure for the targeted isolation of antibacterial compounds from Manuka (Leptospermum scoparium) leaf and branch extracts was described in this paper. Antibacterial compounds from three different Manuka samples collected from New Zealand and China were compared. The active compounds were targeted by TLC-bioautography against S. aureus and were identified by HR-ESI-MS, and -MS/MS analysis in conjunction with Compound Discoverer 3.3. The major antibacterial component, grandiflorone, was identified, along with 20 ß-triketones, flavonoids, and phloroglucinol derivatives. To verify the software identification, grandiflorone underwent purification via column chromatography, and its structure was elucidated through NMR analysis, ultimately confirming its identity as grandiflorone. This study successfully demonstrated that the leaves and branches remaining after Manuka essential oil distillation serve as excellent source for extracting grandiflorone. Additionally, we proposed an improved TLC-bioautography protocol for evaluating the antibacterial efficacy on solid surfaces, which is suitable for both S. aureus and E. coli. The minimum effective dose (MED) of grandiflorone was observed to be 0.29-0.59 µg/cm2 against S. aureus and 2.34-4.68 µg/cm2 against E. coli, respectively. Furthermore, the synthetic plant growth retardant, paclobutrazol, was isolated from the samples obtained in China. It is hypothesized that this compound may disrupt the synthesis pathway of triketones, consequently diminishing the antibacterial efficacy of Chinese Manuka extract in comparison to that of New Zealand.


Assuntos
Leptospermum , Staphylococcus aureus , Leptospermum/química , Espectrometria de Massas em Tandem , Escherichia coli , Antibacterianos/química , Folhas de Planta
4.
Food Chem ; 440: 138060, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211407

RESUMO

Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.


Assuntos
Mel , Mel/análise , Inteligência Artificial , Néctar de Plantas/química , Flores/química , Aldeído Pirúvico/química , Leptospermum/química
5.
J Agric Food Chem ; 71(41): 15261-15269, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796058

RESUMO

Honey from the nectar of the Manuka tree (Leptospermum scoparium) grown in New Zealand contains high amounts of antibacterial methylglyoxal (MGO). MGO can react with proteins to form peptide-bound Maillard reaction products (MRPs) such as Nε-carboxyethyllysine (CEL) and "methylglyoxal-derived hydroimidazolone 1" (MG-H1). To study the reactions of MGO with honey proteins during storage, three manuka honeys with varying amounts of MGO and a kanuka honey (Kunzea ericoides) spiked with various MGO concentrations up to 700 mg/kg have been stored at 37 °C for 10 weeks, and the formation of protein-bound MRPs has been analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) following isolation of the protein fraction and enzymatic hydrolysis. During storage, contents of protein-bound CEL and MG-H1 increased continuously, directly depending on the MGO content. For honeys with large amounts of MGO, a slower formation of Nε-fructosyllysine (FL) was observed, indicating competing reactions of glucose and MGO with lysine. Furthermore, the lysine modification increased with storage independently from the MGO concentration. Up to 58-61% of the observed lysine modification was explainable with the formation of CEL and FL, indicating that other reactions, most likely the formation of Heyns products from lysine and fructose, may play an important role. Our results can contribute to the authentication of manuka honey.


Assuntos
Mel , Mel/análise , Espectrometria de Massas em Tandem , Lisina , Aldeído Pirúvico/química , Óxido de Magnésio , Proteínas , Leptospermum/química , Produtos Finais de Glicação Avançada , Reação de Maillard
6.
Mini Rev Med Chem ; 23(20): 1928-1941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282661

RESUMO

The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.


Assuntos
Doenças Transmissíveis , Mel , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Leptospermum/química , Doenças Transmissíveis/tratamento farmacológico
7.
Food Chem ; 426: 136614, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329801

RESUMO

Diastase is used internationally as a quality monitor for excessive heat treatment and prolonged storage of honey; honey must contain an activity of at least 8 diastase numbers (DN) for it to be considered export quality. Freshly harvested manuka honey can have diastase activity close to the export threshold of 8 DN without excess heating, increasing susceptibility for export failure. This research investigated the effect of compounds unique to or high in concentration in manuka honey on diastase activity. Investigation of the effect of methylglyoxal, dihydroxyacetone, 2-methoxybenzoic acid, 3-phenyllatic acid, 4-hydroxyphenyllactic acid and 2'-methoxyacetophenone on diastase activity was carried out. Manuka honey was stored at 20 and 27 °C and clover honey spiked with compounds of interest were stored at 20, 27 and 34 °C and monitored overtime. Methylglyoxal and 3-phenyllactic acid were found to accelerate the loss of diastase above the loss normally observed with time and elevated temperature.


Assuntos
Mel , Aldeído Pirúvico , Amilases , Leptospermum , Di-Hidroxiacetona
8.
J Agric Food Chem ; 71(20): 7703-7709, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191313

RESUMO

Ma̅nuka honey is known for its strong bioactivity, which arises from the autocatalytic conversion of 1,3-dihydroxyacetone (dihydroxyacetone, DHA) in the floral nectar of Leptospermum scoparium (Myrtaceae) to the non-peroxide antibacterial compound methylglyoxal during honey maturation. DHA is also a minor constituent of the nectar of several other Leptospermum species. This study used high-performance liquid chromatography to test whether DHA was present in the floral nectar of five species in other genera of the family Myrtaceae: Ericomyrtus serpyllifolia (Turcz.) Rye, Chamelaucium sp. Bendering (T.J. Alford 110), Kunzea pulchella (Lindl.) A.S. George, Verticordia chrysantha Endl., and Verticordia picta Endl. DHA was found in the floral nectar of two of the five species: E. serpyllifolia and V. chrysantha. The average amount of DHA detected was 0.08 and 0.64 µg per flower, respectively. These findings suggest that the accumulation of DHA in floral nectar is a shared trait among several genera within the family Myrtaceae. Consequently, non-peroxide-based bioactive honey may be sourced from floral nectar outside the genus Leptospermum.


Assuntos
Mel , Myrtaceae , Néctar de Plantas/química , Mel/análise , Leptospermum/química , Di-Hidroxiacetona/química , Secale
9.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985830

RESUMO

Methylglyoxal (MGO) is considered to be one of the vital components responsible for the anti-bacterial activity of Leptospermum spp. (Manuka) honey. While many studies have demonstrated a dose-dependent antibacterial activity for MGO in vitro, from a therapeutic viewpoint, it is also important to confirm its release from Manuka honey and also from Manuka honey-based formulations. This study is the first to report on the release profile of MGO from five commercial products containing Manuka honey using a Franz diffusion cell and High-Performance Liquid Chromatography (HPLC) analysis. The release of MGO expressed as percentage release of MGO content at baseline was monitored over a 12 h period and found to be 99.49 and 98.05% from an artificial honey matrix and NZ Manuka honey, respectively. For the investigated formulations, a time-dependent % MGO release between 85% and 97.18% was noted over the 12 h study period.


Assuntos
Mel , Mel/análise , Aldeído Pirúvico/química , Óxido de Magnésio , Cromatografia Líquida de Alta Pressão , Leptospermum/química , Antibacterianos/farmacologia , Antibacterianos/análise
10.
Ocul Immunol Inflamm ; 31(5): 1085-1088, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522271

RESUMO

BACKGROUND: To study the efficacy of 100% Leptospermum medical grade Manuka honey ointment in persistent corneal epithelial defects (CEDs). METHODS: Case series. RESULTS: Case 1 was a 25-year-old female patient who presented to the cornea clinic with a persistent CED (3.5 mm), following acanthamoeba keratitis, that had failed to respond to heavy, frequent lubrication drops and ointment. Two weeks later, after starting Leptospermum honey ointment (4 times per day), the CED healed totally. Case 2 was a 48-year diabatic, single-eyed female patient who presented with a persistent CED (1.5 × 1.5 mm) that had failed to respond to heavy, frequent lubrication drops and ointment. The CED healed three weeks after starting Leptospermum honey ointment (4 times per day). CONCLUSIONS: Leptospermum honey ointment can be a potential treatment for persistent epithelial defect.


Assuntos
Oftalmopatias , Mel , Humanos , Feminino , Adulto , Leptospermum , Pomadas , Córnea
11.
Chem Biodivers ; 20(2): e202201111, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36546830

RESUMO

Leptosperols C-G (1-5), five new phenylpropanoyl phloroglucinol derivatives were isolated from the leaves of Leptospermum scoparium. Compounds 1-3 are phenylpropanoyl phloroglucinol-sesquiterpene adducts with new carbon skeletons. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculation. Compounds 2 and 3 exhibited moderate anti-inflammatory activity in zebrafish acute inflammatory models.


Assuntos
Leptospermum , Floroglucinol , Animais , Leptospermum/química , Estrutura Molecular , Floroglucinol/química , Peixe-Zebra , Cristalografia por Raios X
12.
Environ Microbiol ; 25(3): 766-771, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562630

RESUMO

Flowers are an important niche for microbes, and microbes in turn influence plant fitness. As flower morphology and biology change rapidly over time, dynamic niches for microbes are formed and lost. Floral physiology at each life stage can therefore influence arrival, persistence and loss of microbial species; however, this remains little understood despite its potential consequences for host reproductive success. Through internal transcribed spacer 1 (ITS1) community profiling, we characterized the effect of transitioning through five floral stages of manuka (Leptospermum scoparium), from immature bud to spent flower, and subsequent allocation to seed, on the flower-inhabiting fungal community. We found nectar-consuming yeasts from Aureobasidium and Vishniacozyma genera and functionally diverse filamentous fungi from the Cladosporium genus dominated the anthosphere. The candidate core microbiota persisted across this dynamic niche despite high microbial turnover, as observed in shifts in community composition and diversity as flowers matured and senesced. The results demonstrated that floral stages are strong drivers of anthosphere fungal community assembly and dynamics. This study represents the first detailed exploration of fungi through floral development, building on fundamental knowledge in microbial ecology of healthy flowers.


Assuntos
Microbiota , Micobioma , Leptospermum , Flores/microbiologia , Néctar de Plantas , Polinização
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122274, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580751

RESUMO

Honey is a complex food matrix that contains diverse polyphenolic compounds. Some phenolics exhibit fluorescence signatures which can be used to evaluate honey quality, and authenticity and to determine botanical origin. Manuka honey contains two unique fluorescence markers: Leptosperin (MM1) and LepteridineTM (MM2) that are derived from Leptospermum scoparium nectar. Fluorescence measurement of supersaturated solutions such as undiluted honeys can be challenged by complex inner filter effects. The current study shows the ability of internal reflectance cell fluorescence measurement and multi-way analysis to detect fluorophores in undiluted honeys. This study scanned honeys from different geographic districts generating excitation emission matrices (250-400/300-600 nm), and by near infrared (NIR) hyperspectral camera (547-1701 nm). PARAFAC and tri-PLS could track two fluorescence markers: MM1 (R2 = 0.82 & RMSEP = 138.65) and MM2 (R2 = 0.82 & RMSEP = 2.75) from undiluted honey fluorescence data with > 80 % accuracy. Classification of mono-floral, multi-floral and non-manuka honeys achieved 90 % overall accuracy. Fusion of fluorescence data at ƛex 270 & 330 nm and NIR hyperspectral data combined with multi-block PLS analysis enhances predictability of fluorescence markers further. The study revealed the potential of internal reflectance cell fluorescence measurement combined with chemometrics and data fusion for rapid evaluation of honey quality and botanical origin.


Assuntos
Mel , Mel/análise , Leptospermum , Espectrometria de Fluorescência , Corantes Fluorescentes , Fenóis/análise
14.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235188

RESUMO

This study reports on the development and validation of a HPTLC-derived database to identify phenolic compounds in honey. Two database sets are developed to contain the profiles of 107 standard compounds. Rich data in the form of Rf values, colour hues (H°) at 254 nm and 366 nm, at 366 nm after derivatising with natural product PEG reagent, and at 366 nm and white light after derivatising with vanillin-sulfuric acid reagent, λ max and λ min values in their fluorescence and λ max values in their UV-Vis spectra as well as λ max values in their fluorescence and UV-Vis spectra after derivatisation are used as filtering parameters to identify potential matches in a honey sample. A spectral overlay system is also developed to confirm these matches. The adopted filtering approach is used to validate the database application using positive and negative controls and also by comparing matches with those identified via HPLC-DAD. Manuka honey is used as the test honey and leptosperine, mandelic acid, kojic acid, lepteridine, gallic acid, epigallocatechin gallate, 2,3,4-trihydroxybenzoic acid, o-anisic acid and methyl syringate are identified in the honey using the HPTLC-derived database.


Assuntos
Produtos Biológicos , Mel , Cromatografia Líquida de Alta Pressão , Ácido Gálico/análise , Mel/análise , Leptospermum , Fenóis
15.
Plant Sci ; 323: 111378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842059

RESUMO

Leptospermum polygalifolium Salisb. can accumulate high concentrations of dihydroxyacetone (DHA), precursor of the antimicrobial compound methylglyoxal found in honey obtained from floral nectar of Leptospermum spp. Floral nectar dynamics over flower lifespan depends on internal and external factors that invariably impact nectar quality. Current models to estimate nectar quality in Leptospermum spp. overlook time of day, daily (24 h), and long-term dynamics of nectar exudation and accumulation over flower lifespan. To explain the dynamics of nectar quality over flower lifespan, accumulated nectar from flowers of different ages was collected from two L. polygalifolium clones, and then re-collected 24 h later from the same flowers. High-Performance Liquid Chromatography was used to quantify DHA amount and total equivalents of glucose + fructose (Tsugar) per flower in the nectar. DHA and Tsugar amount per flower differed with flower age and between clones. In accumulated nectar, the amount of DHA and Tsugar per flower rose to a broad peak post-anthesis before decreasing. Immediately after peaking DHA declined more quickly than Tsugar in accumulated nectar due to a greater decrease in the exudation of DHA than for Tsugar. The DHA : Tsugar ratios in accumulated nectar and in nectar exuded over the next 24 h were similar and decreased with flower age, indicating that exudation and reabsorption occurred concomitantly across flower development. Hence there is a balance between exudation and reabsorption. A quantitative model suggested that flowers have the potential to exude more DHA and Tsugar than actually accumulated.


Assuntos
Mel , Leptospermum , Carboidratos/análise , Di-Hidroxiacetona/análise , Di-Hidroxiacetona/química , Flores/química , Mel/análise , Leptospermum/química , Néctar de Plantas , Açúcares
16.
PLoS One ; 17(7): e0272376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901185

RESUMO

Variation in the antibacterial potency of manuka honey has been reported in several published studies. However, many of these studies examine only a few honey samples, or test activity against only a few bacterial isolates. To address this deficit, a collection of 29 manuka/Leptospermum honeys was obtained, comprising commercial manuka honeys from Australia and New Zealand and several Western Australian Leptospermum honeys obtained directly from beekeepers. The antibacterial activity of honeys was quantified using several methods, including the broth microdilution method to determine minimum inhibitory concentrations (MICs) against four species of test bacteria, the phenol equivalence method, determination of antibacterial activity values from optical density, and time kill assays. Several physicochemical parameters or components were also quantified, including methylglyoxal (MGO), dihydroxyacetone (DHA), hydroxymethylfurfural (HMF) and total phenolics content as well as pH, colour and refractive index. Total antioxidant activity was also determined using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing-antioxidant power) assays. Levels of MGO quantified in each honey were compared to the levels stated on the product labels, which revealed mostly minor differences. Antibacterial activity studies showed that MICs varied between different honey samples and between bacterial species. Correlation of the MGO content of honey with antibacterial activity showed differing relationships for each test organism, with Pseudomonas aeruginosa showing no relationship, Staphylococcus aureus showing a moderate relationship and both Enterococcus faecalis and Escherichia coli showing strong positive correlations. The association between MGO content and antibacterial activity was further investigated by adding known concentrations of MGO to a multifloral honey and quantifying activity, and by also conducting checkerboard assays. These investigations showed that interactions were largely additive in nature, and that synergistic interactions between MGO and the honey matrix did not occur.


Assuntos
Mel , Leptospermum , Antibacterianos/química , Antibacterianos/farmacologia , Austrália , Escherichia coli , Leptospermum/química , Óxido de Magnésio , Nova Zelândia , Aldeído Pirúvico
17.
PLoS One ; 17(6): e0269361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657968

RESUMO

The very similar appearance of pollen of the New Zealand Myrtaceous taxa Leptospermum scoparium s.l. (manuka) and Kunzea spp. (kanuka) has led palynologists to combine them in paleoecological and melissopalynological studies. This is unfortunate, as differentiation of these taxa would improve understanding of past ecological change and has potential to add value to the New Zealand honey industry, where manuka honey attracts a premium price. Here, we examine in detail the pollen morphology of the 10 Kunzea species and a number of Leptospermum scoparium morphotypes collected from around New Zealand, using light microscopy, SEM, and Classifynder (an automated palynology system). Our results suggest that at a generic level the New Zealand Leptospermum and Kunzea pollen can be readily differentiated, but the differences between pollen from the morphotypes of Leptospermum or between the species of Kunzea are less discernible. While size is a determinant factor-equatorial diameter of Leptospermum scoparium pollen is 19.08 ± 1.28 µm, compared to 16.30 ± 0.95 µm for Kunzea spp.-other criteria such as surface texture and shape characteristics are also diagnostic. A support vector machine set up to differentiate Leptospermum from Kunzea pollen using images captured by the Classifynder system had a prediction accuracy of ~95%. This study is a step towards future melissopalynological differentiation of manuka honey using automated pollen image capture and classification approaches.


Assuntos
Mel , Kunzea , Myrtaceae , Mel/análise , Leptospermum , Nova Zelândia , Pólen
18.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630758

RESUMO

Honey production and export are significant contributors to the Aotearoa New Zealand economy, generating over 400 million dollars in revenue. Its main export is manuka (Leptospermum scoparium) honey, which has a high commercial value due to its medicinal properties that are linked to its unique chemical composition. The compound methylglyoxal (MGO) has been identified as the main floral marker and is used as a quality indicator, often labelled as unique manuka factor (UMF). However, the high demand for manuka honey creates pressure on beekeepers and may have negative ecological consequences by favouring extensive manuka monocultures to the detriment of other native species. There are other honeys native to New Zealand, such as kamahi (Weinmannia racemosa), kanuka (Kunzea ericoides), rata (Metrosideros robusta) and rewarewa (Knightia excelsa), that also have medicinal properties; however, they are less well known in the local and global market. Indigenous Maori communities envision the production and commercialization (locally and internationally) of these honeys as an opportunity to generate income and secure a sustainable future in alignment with their worldview (Te Ao Maori) and values (tikanga Maori). Diversifying the market could lead to a more sustainable income for beekeepers and reduce pressure on Maori and the conservation land, while supporting indigenous communities to realize their vision and aspirations. This manuscript provides an extensive review of the scientific literature, technical literature and traditional knowledge databases describing the plants of interest and their traditional medicinal uses (rongoa) and the chemical properties of each honey, potential floral markers and their biological activity. For each honey type, we also identify knowledge gaps and potential research avenues. This information will assist Maori beekeepers, researchers, consumers and other stakeholders in making informed decisions regarding future research and the production, marketing and consumption of these native monofloral honeys.


Assuntos
Mel , Kunzea , Humanos , Leptospermum/química , Havaiano Nativo ou Outro Ilhéu do Pacífico , Nova Zelândia
19.
Vet Parasitol ; 300: 109606, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34735845

RESUMO

The use of natural products in research on tick control for Rhipicephalus microplus is increasing year by year, with promising results. In this regard, the aim of the present study was to phytochemically characterize the essential oils (EOs) of Leptospermum scoparium, Origanum vulgare and Litsea cubeba, and to evaluate the acaricidal activity of these EOs in solutions prepared using ethanol, dimethylsulfoxide (DMSO) and Tween 80 on larvae and females of R. microplus. In addition, three L. scoparium fractions were also isolated and their acaricidal activity on these larvae and adult females was tested. Gas chromatography and mass spectrometry results showed that cis-calamenene (29.82 %), carvacrol (64.85 %) and geranial (42.44 %) were the majority compounds of L. scoparium, O. vulgare and L. cubeba, respectively. Three fractions were isolated from L. scoparium: A1, rich in sesquiterpene hydrocarbons, and A2 and A3, rich in ß-triketones. Bioassays on unfed larvae (immersion test) were performed using all the EOs at concentrations from 2.5 to 10.0 mg/mL; and using the three fractions obtained from L. scoparium EO at concentrations from 0.625 to 10 mg/mL. We observed 100 % mortality of larvae in all treatments with L. scoparium EO at all concentrations (diluted both in DMSO and in ethanol), and in treatments with O. vulgare EO diluted in DMSO. However, L. cubeba EO only gave rise to more than 99 % mortality at a concentration of 10 mg/mL, using the same solvents. For engorged females, the immersion test was performed at concentrations from 2.5 to 10.0 mg/mL. Percentage control greater than 90 % was observed only at the highest concentrations of L. scoparium and O. vulgare EOs diluted in DMSO and ethanol, while L. cubeba EO did not reach 90 % control in any of the treatments. In tests on L. scoparium fractions, larval mortality in the fractions rich in ß-triketones (A2 and A3) was above 97 % at a concentration of 2.5 mg/mL, while in the A1 fraction, rich in sesquiterpene hydrocarbons, at the same concentration (2.5 mg/mL), mortality did not reach 22 %. In the adult immersion test, the percentage control was higher than 98 % at the lowest concentration (2.5 mg/mL) of the A1 fraction, while in the treatments with the fractions A2 and A3, the control levels were 16 and 50 %, respectively. Thus, we can conclude that the EOs of L. scoparium, O. vulgare and L. cubeba have acaricidal activity on R. microplus, as also do the fractions derived from L. scoparium EO.


Assuntos
Acaricidas , Litsea , Óleos Voláteis , Origanum , Rhipicephalus , Acaricidas/farmacologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Larva , Leptospermum , Óleos Voláteis/farmacologia , Solventes
20.
Molecules ; 26(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684677

RESUMO

Two new phthalide derivatives, rhytidhylides A (1) and B (2), together with ten known compounds (3-12) were isolated from cultures of Rhytidhysteron sp. BZM-9, an endophyte isolated from the leaves of Leptospermum brachyandrum. Their structures were identified by an extensive analysis of NMR, HRESIMS, ECD, and through comparison with data reported in the literature. In addition, the cytotoxic activities against two human hepatoma cell lines (HepG2 and SMMC7721) and antibacterial activities against MRSA and E. coli were evaluated.


Assuntos
Ascomicetos/química , Benzofuranos/isolamento & purificação , Benzofuranos/efeitos adversos , Benzofuranos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Endófitos/química , Escherichia coli/efeitos dos fármacos , Humanos , Leptospermum/microbiologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA