Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.587
Filtrar
1.
J Cell Mol Med ; 28(15): e18589, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135202

RESUMO

Sepsis causes systemic inflammatory responses and acute lung injury (ALI). Despite modern treatments, sepsis-related ALI mortality remains high. Aqueous extract of Descuraniae Semen (AEDS) exerts anti-endoplasmic reticulum (ER) stress, antioxidant and anti-inflammatory effects. AEDS alleviates inflammation and oedema in ALI. Sodium-potassium-chloride co-transporter isoform 1 (NKCC1) is essential for regulating alveolar fluid and is important in ALI. The NKCC1 activity is regulated by upstream with-no-lysine kinase-4 (WNK4) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). This study aimed to investigate the effects of AEDS on lipopolysaccharide (LPS)-induced ALI model in A549 cells, considering the regulation of ER stress, WNK4-SPAK-NKCC1 cascades, inflammation and apoptosis. Cell viability was investigated by the CCK-8 assay. The expressions of the proteins were assessed by immunoblotting analysis assays. The levels of pro-inflammatory cytokines were determined by ELISA. The expression of cytoplasmic Ca2+ in A549 cells was determined using Fluo-4 AM. AEDS attenuates LPS-induced inflammation, which is associated with increased pro-inflammatory cytokine expression and activation of the WNK4-SPAK-NKCC1 pathway. AEDS inhibits the WNK4-SPAK-NKCC1 pathway by regulating of Bcl-2, IP3R and intracellular Ca2+. WNK4 expression levels are significantly higher in the WNK4-overexpressed transfected A549 cells and significantly decrease after AEDS treatment. AEDS attenuates LPS-induced inflammation by inhibiting the WNK4-SPAK-NKCC1 cascade. Therefore, AEDS is regarded as a potential therapeutic agent for ALI.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação , Lipopolissacarídeos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Membro 2 da Família 12 de Carreador de Soluto , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células A549 , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
2.
Gen Physiol Biophys ; 43(5): 399-409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39140680

RESUMO

Acute lung injury (ALI) is a significant health condition with notable rates of morbidity and mortality globally. Long non-coding ribose nucleic acids (lncRNAs) play vital roles in mitigating various inflammation-related diseases, including ALI. The study aimed to investigate the functional role and molecular mechanisms of lncRNA SNHG1 on ALI in lipopolysaccharide (LPS)-treated A549 cells and in LPS-induced ALI mice. The expression of SNHG1 was initially examined in LPS-treated A549 cells. We further demonstrated the critical function of SNHG1 through various cellular assessments following SNHG1 knockdown, including cell counting kit (CCK)-8 assay, flow cytometry analysis, as well as enzyme-linked immunosorbent assay (ELISA). Reducing SNHG1 levels hindered the negative effects of LPS on cell viability, apoptosis, and inflammation. Moreover, SNHG1 acted as a negative regulator for miR-199a-3p, which targeted downstream ROCK2. Depletion of miR-199a-3p or enhanced expression of ROCK2 abolished the protective effects of SNHG1 knockdown on LPS-induced apoptosis and inflammation. Consistently, silencing SNHG1 alleviated LPS-induced lung injury in mice, demonstrating its potential therapeutic benefits in managing ALI. Overall, this study sheds light on the role of SNHG1 in modulating inflammation and apoptosis in ALI through the miR-199a-3p/ROCK2 pathway, offering new insights for the treatment of this condition.


Assuntos
Lesão Pulmonar Aguda , Técnicas de Silenciamento de Genes , Lipopolissacarídeos , MicroRNAs , RNA Longo não Codificante , Quinases Associadas a rho , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Camundongos , Humanos , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Masculino , Células A549 , Transdução de Sinais , Camundongos Endogâmicos C57BL , Apoptose/genética
3.
Respir Res ; 25(1): 276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010105

RESUMO

BACKGROUND: The pathogenesis of acute lung injury (ALI) involves a severe inflammatory response, leading to significant morbidity and mortality. N6-methylation of adenosine (m6A), an abundant mRNA nucleotide modification, plays a crucial role in regulating mRNA metabolism and function. However, the precise impact of m6A modifications on the progression of ALI remains elusive. METHODS: ALI models were induced by either intraperitoneal injection of lipopolysaccharide (LPS) into C57BL/6 mice or the LPS-treated alveolar type II epithelial cells (AECII) in vitro. The viability and proliferation of AECII were assessed using CCK-8 and EdU assays. The whole-body plethysmography was used to record the general respiratory functions. M6A RNA methylation level of AECII after LPS insults was detected, and then the "writer" of m6A modifications was screened. Afterwards, we successfully identified the targets that underwent m6A methylation mediated by METTL3, a methyltransferase-like enzyme. Last, we evaluated the regulatory role of METTL3-medited m6A methylation at phosphatase and tensin homolog (Pten) in ALI, by assessing the proliferation, viability and inflammation of AECII. RESULTS: LPS induced marked damages in respiratory functions and cellular injuries of AECII. The m6A modification level in mRNA and the expression of METTL3, an m6A methyltransferase, exhibited a notable rise in both lung tissues of ALI mice and cultured AECII cells subjected to LPS treatment. METTL3 knockdown or inhibition improved the viability and proliferation of LPS-treated AECII, and also reduced the m6A modification level. In addition, the stability and translation of Pten mRNA were enhanced by METTL3-mediated m6A modification, and over-expression of PTEN reversed the protective effect of METTL3 knockdown in the LPS-treated AECII. CONCLUSIONS: The progression of ALI can be attributed to the elevated levels of METTL3 in AECII, as it promotes the stability and translation of Pten mRNA through m6A modification. This suggests that targeting METTL3 could offer a novel approach for treating ALI.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Proliferação de Células , Metiltransferases , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase , RNA Mensageiro , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Masculino , RNA Mensageiro/metabolismo , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Metilação , Adenosina/análogos & derivados , Adenosina/metabolismo , Lipopolissacarídeos/toxicidade , Estabilidade de RNA , Células Cultivadas
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000242

RESUMO

Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Lipopolissacarídeos , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Humanos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Masculino , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , NF-kappa B/metabolismo , Líquido da Lavagem Broncoalveolar , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Lisados Bacterianos
5.
J Cell Mol Med ; 28(13): e18386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990057

RESUMO

Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.


Assuntos
Lesão Pulmonar Aguda , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Naftoquinonas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/toxicidade , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Masculino , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana/metabolismo
6.
Respir Res ; 25(1): 291, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080660

RESUMO

Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.


Assuntos
Lesão Pulmonar Aguda , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfoglicerato Quinase , Piroptose , Piroptose/fisiologia , Piroptose/efeitos dos fármacos , Animais , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Glicólise/fisiologia , Glicólise/efeitos dos fármacos , Masculino , Lipopolissacarídeos/toxicidade , Camundongos Knockout , Células Cultivadas
7.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054966

RESUMO

Sepsis is a life­threatening multiple organ failure disease caused by an uncontrolled inflammatory response and can progress to acute lung injury (ALI). Heat­shock protein B8 (HSPB8) serves a cytoprotective role in multiple types of diseases; however, to the best of our knowledge, the regulatory role of HSPB8 in sepsis­induced ALI remains unclear. A549 human alveolar type II epithelial cells were treated with lipopolysaccharide (LPS) for 24 h to simulate a sepsis­induced ALI model. Cell transfection was performed to overexpress HSPB8, and cells were treated with mitochondrial division inhibitor­1 (Mdivi­1) for 2 h before LPS induction to assess the underlying mechanism. Protein expression was evaluated using western blotting and an immunofluorescence assay. Cytokines were examined using ELISA assay kits and antioxidant enzymes were examined using their detection kits. Cell apoptosis was detected using flow cytometry. The mitochondrial membrane potential was detected by JC­1 staining. HSPB8 was upregulated in A549 cells treated with LPS and HSPB8 overexpression attenuated LPS­induced inflammatory cytokine levels, oxidative stress and apoptosis in A549 cells. LPS inhibited mitophagy and reduced the mitochondrial membrane potential in A549 cells, which was partly inhibited by HSPB8 overexpression. Furthermore, Mdivi­1 decreased the inhibitory effect of HSPB8 on the inflammatory response, oxidative stress and apoptosis in LPS­treated A549 cells. In conclusion, HSPB8 overexpression attenuated the LPS­mediated inflammatory response, oxidative stress and apoptosis in A549 cells by promoting mitophagy, indicating HSPB8 as a potential therapeutic target in sepsis­induced ALI.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Citocinas , Proteínas de Choque Térmico , Lipopolissacarídeos , Potencial da Membrana Mitocondrial , Mitofagia , Chaperonas Moleculares , Estresse Oxidativo , Humanos , Mitofagia/efeitos dos fármacos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Células A549 , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Citocinas/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
8.
Respir Res ; 25(1): 263, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956592

RESUMO

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Assuntos
Lesão Pulmonar Aguda , Histona Desacetilases , Lipopolissacarídeos , Lisina , Camundongos Endogâmicos C57BL , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Acetilação , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/deficiência , Lisina/metabolismo , Camundongos Knockout , Masculino , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Células Mieloides/metabolismo
9.
J Ethnopharmacol ; 334: 118515, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972530

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Mongolian medicine, Loulu flower (LLF), the dried inflorescence of Rhaponticum uniflorum (L.) DC. from the Compositae family, has been used to clear heat and relieve toxicity for millennia, particularly in the treatment of pneumonia. AIM OF THIS STUDY: To reveal the effects of LLF on mice with lipopolysaccharide (LPS)-stimulated acute lung injury (ALI) and elucidate the underlying mechanisms. MATERIALS AND METHODS: ALI was established in BALB/c mice via nasal drops administration of LPS (5 mg/kg). The mice were then orally administrated with various doses of LLF extracts and the positive drug dexamethasone (DEX, 5 mg/kg), once daily for seven consecutive days. Last day, after being stimulated with LPS for 6h, the mice were closed dislocation of cervical vertebra, the serum, bronchus alveolar lavage fluid (BALF) and lung tissue were put into the EP tube and stored at -80 °C for further analysis. The changes of histopathology were tested by hematoxylin and eosin stain (H&E), the levels of, IL-1ß, IL-18, TNF-α and IL-4 in BALF and serum were measured by ELISA. The pathways related to the treatment of ALI were predicted by network pharmacology. The expression levels of TLR4/NF-κB and NLRP3 signaling pathway-associated proteins, COX-2 and ERK were tested by western blotting. The levels of P65 and NLRP3 in lung tissues were determined by immunofluorescence analysis. RESULTS: LLF total extract and the extract parts could alleviate the inflammatory cell infiltration, thicken the alveolar walls in lung tissues, reduce the levels of IL-18, IL-1ß in BALF, the TNF-α in both BALF and serum, meantime enhance the level of IL-4 in BALF and serum in mice with LPS-induced ALI. Our network pharmacology and comprehensive gene ontology analyses revealed the active constituents of LLF and the pathways, including TLR4/NF-κB, NLRP3 and MAPK signaling pathways, which play significant roles in ALI. Furthermore, both the total extract and its extraction portions suppressed the expressions of proteins related with the COX-2, p-ERK and TLR4/NF-κB signaling pathway (TLR4, p-IκB, p-p65), as well as the NLRP3 signaling pathway (NLRP3, cleaved caspase-1, caspase-1, IL-1ß). CONCLUSION: LLF could improve the pathological changes and reducing inflammatory reactions in mice induced by LPS. The mechanism may be related to the modulation of the TLR4/NLRP3 signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Flores , Lipopolissacarídeos , Pulmão , Camundongos Endogâmicos BALB C , Extratos Vegetais , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Flores/química , Extratos Vegetais/farmacologia , Masculino , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Etanol/química , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Líquido da Lavagem Broncoalveolar , Solventes/química , Transdução de Sinais/efeitos dos fármacos
10.
J Ethnopharmacol ; 334: 118584, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019418

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY: To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS: Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1ß, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS: FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION: FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.


Assuntos
Medicamentos de Ervas Chinesas , Lipopolissacarídeos , Lesão Pulmonar , Metabolômica , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Modelos Animais de Doenças , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo
11.
Int Immunopharmacol ; 139: 112679, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39013217

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe clinical condition in the intensive care units, and obesity is a high risk of ALI. Paradoxically, obese ALI patients had better prognosis than non-obese patients, and the mechanism remains largely unknown. METHODS: Mouse models of ALI and diet-induced-obesity (DIO) were used to investigate the effect of exosomes derived from adipose tissue. The adipose-derived exosomes (ADEs) were isolated by ultracentrifugation, and the role of exosomal miRNAs in the ALI was studied. RESULTS: Compared with ADEs of control mice (C-Exo), ADEs of DIO mice (D-Exo) increased survival rate and mitigated pulmonary lesions of ALI mice. GO and KEGG analyses showed that the target genes of 40 differentially expressed miRNAs between D-Exo and C-Exo were mainly involved with inflammation, apoptosis and cell cycle. Furthermore, the D-Exo treatment significantly decreased Ly6G+ cell infiltration, down-regulated levels of pro-inflammatory cytokines (IL-6, IL-12, TNF-α, MCP-1) and chemokines (IL-8 and MIP-2), reduced pulmonary apoptosis and arrest at G0G1 phase (P < 0.01). And the protective effects of D-Exo were better than those of C-Exo (P < 0.05). Compared with the C-Exo mice, the levels of miR-16-5p and miR-335-3p in the D-Exo mice were significantly up-regulated (P < 0.05), and the expressions of IKBKB and TNFSF10, respective target of miR-16-5p and miR-335-3p by bioinformatic analysis, were significantly down-regulated in the D-Exo mice (P < 0.05). CONCLUSIONS: Exosomes derived from adipose tissue of DIO mice are potent to attenuate LPS-induced ALI, which could be contributed by exosome-carried miRNAs. Our data shed light on the interaction between obesity and ALI.


Assuntos
Lesão Pulmonar Aguda , Tecido Adiposo , Apoptose , Citocinas , Exossomos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , MicroRNAs , Obesidade , Animais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Exossomos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Tecido Adiposo/metabolismo , Camundongos , Masculino , Citocinas/metabolismo , Inflamação , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/imunologia , Humanos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167354, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004378

RESUMO

Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Coenzima A Ligases , Ferroptose , Inflamação , Macrófagos , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Cicloexilaminas , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Lipopolissacarídeos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Fenilenodiaminas/farmacologia , Células RAW 264.7
13.
Phytomedicine ; 132: 155859, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972239

RESUMO

BACKGROUND: Acute lung injury (ALI) has received considerable attention in the field of critical care as it can lead to high mortality rates. Polygala tenuifolia, a traditional Chinese medicine with strong expectorant properties, can be used to treat pneumonia. Owing to the complexity of its composition, the main active ingredient is not yet known. Thus, there is a need to identify its constituent compounds and mechanism of action in the treatment of ALI using advanced technological means. PURPOSE: We investigated the anti-inflammatory mechanism and constituent compounds with regard to the effect of P. tenuifolia Willd. extract (EPT) in lipopolysaccharide (LPS)-induced ALI in vivo and in vitro. METHODS: The UHPLC-Q-Exactive Orbitrap MS technology was used to investigate the chemical profile of EPT. Network pharmacology was used to predict the targets and pathways of action of EPT in ALI, and molecular docking was used to validate the binding of polygalacic acid to Toll-like receptor (TLR) 4. The main compounds were determined using LC-MS. A rat model of LPS-induced ALI was established, and THP-1 cells were stimulated with LPS and adenosine triphosphate (ATP) to construct an in vitro model. Pathological changes were observed using hematoxylin and eosin staining, Wright-Giemsa staining, and immunohistochemistry. The expression of inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) was determined using enzyme-linked immunosorbent assay, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The LPS + ATP-induced inflammation model in THP-1 cells was used to verify the in vivo experimental results. RESULTS: Ninety-nine compounds were identified or tentatively deduced from EPT. Using network pharmacology, we found that TLR4/NF-κB may be a relevant pathway for the prevention and treatment of ALI by EPT. Polygalacic acid in EPT may be a potential active ingredient. EPT could alleviate LPS-induced histopathological lung damage and reduce the wet/dry lung weight ratio in the rat model of ALI. Moreover, EPT decreased the white blood cell and neutrophil counts in the bronchoalveolar lavage fluid and decreased the expression of genes and proteins of relevant inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) in lung tissues. It also increased the expression of endothelial-type nitric oxide synthase expression. Western blotting confirmed that EPT may affect TLR4/NF-κB and NLRP3 signaling pathways in vivo. Similar results were obtained in THP-1 cells. CONCLUSION: EPT reduced the release of inflammatory factors by affecting TLR4/NF-κB and NLRP3 signaling pathways, thereby attenuating the inflammatory response of ALI. Polygalacic acid is the likely compounds responsible for these effects.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Lipopolissacarídeos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Extratos Vegetais , Polygala , Ratos Sprague-Dawley , Receptor 4 Toll-Like , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Polygala/química , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Masculino , Inflamassomos/metabolismo , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Humanos , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Pulmão/efeitos dos fármacos , Pulmão/patologia
14.
Food Funct ; 15(14): 7592-7604, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38938065

RESUMO

Sinensetin (SIN), a polymethoxylated flavonoid, exists widely in citrus fruits with abundant biological activities, such as antioxidant and anti-inflammatory properties, delaying the progression of lung fibers and ameliorating inflammatory lung injury. Herein, an in vivo model of LPS-induced acute lung injury (ALI) in mice and an in vitro model of LPS + IFN-γ-induced M1 polarization in RAW264.7 cells were established to assess the effects and molecular mechanisms of SIN in ameliorating ALI. In the present study, the results showed that SIN significantly reduced BALF IL1ß, IL6, and TNF-α levels and neutrophil infiltration, inhibited lung tissue COX2 and iNOS expression, reduced serum and lung tissue inflammatory factor levels, and attenuated lung tissue inflammatory infiltration and ROS levels in animal experiments. RNA sequencing analysis showed that SIN markedly inhibited the expression of inflammation-related pathway genes such as NOD-like receptor signaling. Further mechanistic studies confirmed that SIN significantly inhibited the dissociation of Txnip and Trx-1 and decreased the expression of NLRP3, ASC, pro-Caspase-1, cleavage Caspase-1 p10, NEK7, Caspase-8, IL1ß, IL18, and GSDMD. Meanwhile, SIN docked to NLRP3 with strong affinity and bound stably in the hydrophobic docking pocket. Similarly, the same results were observed in in vitro macrophage M1 polarization experiments. In conclusion, the results revealed that SIN ameliorated the onset and progression of ALI by inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. These findings emphasize the significant role of SIN in ameliorating ALI and provide insights into the strategy for exploring the functional effects of foods.


Assuntos
Lesão Pulmonar Aguda , Proteínas de Transporte , Caspase 1 , Citrus , Flavonoides , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Citrus/química , Flavonoides/farmacologia , Frutas/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas
15.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928077

RESUMO

Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-ß1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.


Assuntos
Lesão Pulmonar Aguda , Bleomicina , Diafragma , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , Animais , Bleomicina/efeitos adversos , Diafragma/metabolismo , Diafragma/patologia , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Masculino , Respiração Artificial/efeitos adversos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Fator de Crescimento Transformador beta1/metabolismo , Apoptose/efeitos dos fármacos , Quinoxalinas , Tiazolidinedionas
16.
Ecotoxicol Environ Saf ; 281: 116615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905933

RESUMO

BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20 mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30 % (untreated) to 80 %, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590 pg/ml, TNF-α from 260 to 150 pg/ml) and increased regulatory cytokines (IL-10 from360 to 550 pg/ml, and TGF-ß from 220 to 410 pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Cistatinas , Paraquat , Schistosoma japonicum , Animais , Paraquat/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Herbicidas/toxicidade , Macrófagos/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças
17.
Int Immunopharmacol ; 137: 112510, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897130

RESUMO

Acute lung injury (ALI), a critical complication observed in various clinical disorders, is characterized by widespread inflammation, neutrophil infiltration, and proinflammatory cytokine production. This study showed that the recently identified non-coding RNA ISIR and its human homolog gene AK131315 played a role in regulating lipopolysaccharide (LPS)-induced inflammatory responses. ISIR and AK131315 increased the production of inflammatory cytokines in LPS-stimulated macrophages, and exogenous ISIR aggravated LPS-induced lung inflammation in an animal model of ALI. Mechanistically, ISIR promoted LPS-triggered NF-κB and MAPK signaling and the transcription of proinflammatory cytokines by enhancing TAK1 activation. Furthermore, a significant correlation was observed between AK131315 expression and pulmonary infectious caused by Gram-negative bacteria, suggesting that AK131315 plays an important role in bacterial infections. Altogether, these findings indicate that ISIR regulates LPS-induced inflammation and AK131315 is involved in the pathogenesis of bacterial infections.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , MAP Quinase Quinase Quinases , NF-kappa B , Lipopolissacarídeos/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , NF-kappa B/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Citocinas/metabolismo , Citocinas/genética , Células RAW 264.7 , Inflamação/genética , Inflamação/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais , Modelos Animais de Doenças
18.
Poult Sci ; 103(7): 103866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833957

RESUMO

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Assuntos
Lesão Pulmonar Aguda , Galinhas , Infecções por Escherichia coli , Glucosídeos , Monoterpenos , NF-kappa B , Fosfatidilinositol 3-Quinases , Doenças das Aves Domésticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/veterinária , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Monoterpenos/farmacologia , Monoterpenos/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos
19.
Chem Biol Interact ; 398: 111112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901789

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.


Assuntos
Lesão Pulmonar Aguda , Dexmedetomidina , Proteínas de Choque Térmico HSP70 , Lipopolissacarídeos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Interleucina-1beta/metabolismo
20.
Int J Mol Med ; 54(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874017

RESUMO

In paraquat (PQ)­induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone­2,6­disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ­intoxicated Sprague­Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ­induced ALI and its related mechanisms. A PQ­intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF­α, IL­1ß and IL­6 were assessed using an ELISA. Transwell and Cell Counting Kit­8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial­cadherin, zonula occludens­1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol­3­kinase (PI3K)/protein kinase B (AKT)/endothelial­type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ­induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ­induced ALI.


Assuntos
Lesão Pulmonar Aguda , Permeabilidade Capilar , Pulmão , Óxido Nítrico Sintase Tipo III , Paraquat , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Paraquat/efeitos adversos , Paraquat/toxicidade , Ratos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA