Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Am Chem Soc ; 145(2): 800-810, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599057

RESUMO

Prodrugs have little or no pharmacological activity and are converted to active drugs in the body by enzymes, metabolic reactions, or through human-controlled actions. However, prodrugs promoting their chemical bioconversion without any of these processes have not been reported before. Here, we present an enzyme-independent prodrug activation mechanism by boron-based compounds (benzoxaboroles) targeting leucyl-tRNA synthetase (LeuRS), including an antibiotic that recently has completed phase II clinical trials to cure tuberculosis. We combine nuclear magnetic resonance spectroscopy and X-ray crystallography with isothermal titration calorimetry to show that these benzoxaboroles do not bind directly to their drug target LeuRS, instead they are prodrugs that activate their bioconversion by forming a highly specific and reversible LeuRS inhibition adduct with ATP, AMP, or the terminal adenosine of the tRNALeu. We demonstrate how the oxaborole group of the prodrugs cyclizes with the adenosine ribose at physiological concentrations to form the active molecule. This bioconversion mechanism explains the remarkably good druglike properties of benzoxaboroles showing efficacy against radically different human pathogens and fully explains the mechanism of action of these compounds. Thus, this adenosine-dependent activation mechanism represents a novel concept in prodrug chemistry that can be applied to improve the solubility, permeability and metabolic stability of challenging drugs.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Adenosina/farmacologia , Leucina-tRNA Ligase/genética , Antibacterianos/farmacologia
2.
J Transl Med ; 20(1): 355, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962451

RESUMO

BACKGROUND: Osteosarcoma is one of the most malignant tumors, and it occurs mostly in children and adolescents. Currently, surgery and chemotherapy are the main treatments. The recurrence rate is high and the prognosis is often poor. Finding an effective target gene therapy for osteosarcoma may effectively improve its prognosis. METHOD: In this study, genes essential for the survival of osteosarcoma cells were identified by genome-wide screening of CRISPR-Cas9 based on the DepMap database. The expression of these essential genes in osteosarcoma patients' tissues and normal tissues was identified in the GSE19276 database. Functional pathway enrichment analysis, protein interaction network construction, and LASSO were performed to construct a prognostic risk model based on these essential genes. CCK8 assay was used to detect the effect of essential gene-LARS (Leucyl-TRNA Synthetase 1) on the proliferation of osteosarcoma. RESULTS: In this study, 785 genes critical for osteosarcoma cell proliferation were identified from the DepMap. Among these 785 essential genes, 59 DEGs were identified in osteosarcoma tissues. In the functional enrichment analysis, these 59 essential genes were mainly enriched in cell cycle-related signaling pathways. Furthermore, we established a risk score module, including LARS and DNAJC17, screened from these 59 genes, and this module could divide osteosarcoma patients into the low-risk and high-risk groups. In addition, knockdown of LARS expression inhibited the proliferative ability of osteosarcoma cells. A significant correlation was found between LARS expression and Monocytic lineage, T cells, and Fibroblasts. CONCLUSION: In conclusion, LARS was identified as an essential gene for survival in osteosarcoma based on the DepMap database. Knockdown of LARS expression significantly inhibited the proliferation of osteosarcoma cells, suggesting that it is involved in the formation and development of osteosarcoma. The results are useful as a foundation for further studies to elucidate a potential osteosarcoma diagnostic index and therapeutic targets.


Assuntos
Neoplasias Ósseas , Leucina-tRNA Ligase/genética , Osteossarcoma , Adolescente , Neoplasias Ósseas/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Genes Essenciais , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia
3.
Commun Biol ; 5(1): 883, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038645

RESUMO

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Assuntos
Leucina-tRNA Ligase , RNA de Transferência de Leucina , Catálise , Domínio Catalítico , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Peptídeos , RNA de Transferência de Leucina/metabolismo
4.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457045

RESUMO

Aminoacyl-tRNA synthetase (aaRS)/tRNA cognate pairs translate the genetic code by synthesizing specific aminoacyl-tRNAs that are assembled on messenger RNA by the ribosome. Deconstruction of the two distinct aaRS superfamilies (Classes) has provided conceptual and experimental models for their early evolution. Urzymes, containing ~120-130 amino acids excerpted from regions where genetic coding sequence complementarities have been identified, are key experimental models motivated by the proposal of a single bidirectional ancestral gene. Previous reports that Class I and Class II urzymes accelerate both amino acid activation and tRNA aminoacylation have not been extended to other synthetases. We describe a third urzyme (LeuAC) prepared from the Class IA Pyrococcus horikoshii leucyl-tRNA synthetase. We adduce multiple lines of evidence for the authenticity of its catalysis of both canonical reactions, amino acid activation and tRNALeu aminoacylation. Mutation of the three active-site lysine residues to alanine causes significant, but modest reduction in both amino acid activation and aminoacylation. LeuAC also catalyzes production of ADP, a non-canonical enzymatic function that has been overlooked since it first was described for several full-length aaRS in the 1970s. Structural data suggest that the LeuAC active site accommodates two ATP conformations that are prominent in water but rarely seen bound to proteins, accounting for successive, in situ phosphorylation of the bound leucyl-5'AMP phosphate, accounting for ADP production. This unusual ATP consumption regenerates the transition state for amino acid activation and suggests, in turn, that in the absence of the editing and anticodon-binding domains, LeuAC releases leu-5'AMP unusually slowly, relative to the two phosphorylation reactions.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Fosforilação
5.
J Biosci Bioeng ; 133(5): 436-443, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35216933

RESUMO

Isoleucyl-tRNA synthetase (IleRS), leucyl-tRNA synthetase (LeuRS), and valyl-tRNA synthetase (ValRS) are enzymes that have potential for the determination of l-isoleucine, l-leucine, and l-valine in food products and plasma. However, the disadvantages of these enzymes are their specificity and sensitivity. Here, we examined the substrate specificity of IleRS, LeuRS, and ValRS under various conditions of pyrophosphate amplification to improve their specificity and sensitivity. The amount of pyrophosphate produced in IleRS, LeuRS, and ValRS reactions was amplified after the addition of excess adenosine-5'-triphosphate and magnesium ions, and was approximately 9-, 8-, and 7-fold higher, respectively, for each of the initial l-amino acid substrates (50 µM). However, in addition to their target amino acids, IleRS, LeuRS, and ValRS also reacted with l-valine, l-lysine, and l-threonine, respectively. This substrate misrecognition was overcome by making the reaction pH more acidic and by increasing the magnesium ion concentration. The pyrophosphate amplification in IleRS, LeuRS, and ValRS reactions resulted in the production of p1, p4-di (adenosine) 5'-tetraphosphate. We also observed a strong positive correlation (R = 0.99) between the amount of pyrophosphate produced and the initial concentration of l-amino acid with 5 and 50 µM l-isoleucine, l-leucine, and l-valine. Our results suggest that amino acid assays using IleRS, LeuRS, and ValRS are promising methods to accurately measure l-valine, l-isoleucine, and l-leucine in food products and plasma.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Difosfatos , Escherichia coli/metabolismo , Isoleucina , Leucina/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Magnésio/metabolismo , RNA de Transferência , Especificidade por Substrato , Valina/metabolismo , Valina-tRNA Ligase/química , Valina-tRNA Ligase/genética , Valina-tRNA Ligase/metabolismo
6.
J Biol Chem ; 298(4): 101757, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202654

RESUMO

The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.


Assuntos
Processamento Alternativo , Leucina-tRNA Ligase , Humanos , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Eur J Med Genet ; 64(11): 104334, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34496286

RESUMO

INTRODUCTION: Aminoacyl transfer RNA (tRNA) synthetases are associated with diseases when mutations occur in their encoding genes. Pulmonary alveolar proteinosis can be caused by mutation in the methionyl-tRNA synthetase (MARS) gene while mutations in the leucine-tRNA synthetase (LARS) gene lead to infantile liver failure syndrome type 1. We report the case of a patient with LARS1 pathogenics variants and two patients with MARS1 pathogenics variants. The aim of this study was to analyze the phenotypes of our three patients in detail and classify cases in the literature using Human Phenotype Ontology (HPO) terms. RESULTS: The first patient has two previously undescribed heterozygous variants in LARS1 (c.1818dup and c.463A>G). The other two patients' MARS1 variants (c.1177G>A and c.1700C>T) have already been described in the literature. All three patients had anemia, hepatomegaly, feeding difficulties, failure to thrive and hypoalbuminemia. Including ours, 65 patients are described in total, for whom 117 phenotypic abnormalities have been described at least once, 41.9% of which both in patients with LARS1 and MARS1 mutations. CONCLUSION: Patients with LARS1 and MARS1 mutations seem to share a common phenotype but further deep phenotyping studies are required to clarify the details of these complex pathologies.


Assuntos
Insuficiência de Crescimento/genética , Leucina-tRNA Ligase/genética , Hepatopatias/genética , Doenças Pulmonares Intersticiais/genética , Metionina tRNA Ligase/genética , Fenótipo , Insuficiência de Crescimento/patologia , Feminino , Humanos , Lactente , Hepatopatias/patologia , Doenças Pulmonares Intersticiais/patologia , Masculino , Síndrome
8.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118889, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091505

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Leucina-tRNA Ligase/genética , Leucina/genética , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Humanos , Leucina/química , Leucina-tRNA Ligase/química , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Transdução de Sinais/genética
10.
Am J Med Genet A ; 185(3): 866-870, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300650

RESUMO

Infantile liver failure syndrome type 1 (ILFS1) is a recently recognized autosomal recessive disorder caused by deleterious mutations in the leucyl-tRNA synthetase 1 gene (LARS1). The LARS1 enzyme is responsible for incorporation of the amino acid leucine during protein polypeptide synthesis. Individuals with LARS1 mutations typically show liver failure from infancy to early childhood during periods of illness or other physiological stress. While 25 patients from 15 families with ILFS1 have been reported in the literature, histological reports from autopsy findings are limited. We report here a premature male neonate who presented with severe intrauterine growth retardation, microcytic anemia, and fulminant liver failure, and who was a compound heterozygote for two novel deleterious mutations in LARS1. An autopsy showed fulminant hepatitis-like hepatocellular injury and fibrogenesis in the liver and a lack of uniformity in skeletal muscle, accompanied by the disruption of striated muscle fibers. Striking dysgenesis in skeletal muscle detected in the present case indicates the effect of LARS1 functional deficiency on the musculature. Whole-exome sequencing may be useful for neonates with unexplained early liver failure if extensive genetic and metabolic testing is inconclusive.


Assuntos
Doenças do Prematuro/genética , Leucina-tRNA Ligase/genética , Falência Hepática/genética , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Mutação Puntual , Sítios de Splice de RNA/genética , Substituição de Aminoácidos , Anemia Neonatal/genética , Éxons/genética , Evolução Fatal , Retardo do Crescimento Fetal/genética , Genes Recessivos , Heterozigoto , Humanos , Hiperbilirrubinemia Neonatal/genética , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/patologia , Íntrons/genética , Leucina-tRNA Ligase/deficiência , Cirrose Hepática/etiologia , Falência Hepática/patologia , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/patologia , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Músculo Esquelético/patologia , Anormalidades Musculoesqueléticas/patologia , Alinhamento de Sequência , Síndrome , Sequenciamento do Exoma
11.
Sheng Li Xue Bao ; 72(4): 523-531, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32820315

RESUMO

The imbalance of protein metabolism is the major cause of skeletal muscle atrophy, and the decrease of protein synthesis directly leads to the occurrence and development of age-related sarcopenia. The canonical role of leucyl-tRNA synthetase (LeuRS) is ligating leucine to the cognate tRNA, and thus it plays a central role in genetic coding. With the further studies of LeuRS in recent years, LeuRS has been found to control protein homeostasis in aging skeletal muscle via its non-canonical role. In this paper, we reviewed the structure and biological features of aminoacyl-tRNA synthetase and LeuRS, and summarized the recent advances in studies on the effects of LeuRS in regulating aging skeletal muscle protein synthesis as an intracellular leucine sensor. Moreover, we also analyzed the potential role of LeuRS in activation of mammalian target of rapamycin complex 1 (mTORC1) signaling transduction pathway in response to anabolic stimuli such as exercise and amino acids ingestion. This paper may provide some new ideas for the prevention, diagnosis and treatment of age-related sarcopenia.


Assuntos
Aminoacil-tRNA Sintetases/genética , Leucina-tRNA Ligase/genética , Músculo Esquelético , Biossíntese de Proteínas
12.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32385222

RESUMO

Leucyl-tRNA synthetases (LRS) catalyze the linkage of leucine with tRNALeu. A large insertion CP1 domain (Connective Polypeptide 1) in LRS is responsible for post-transfer editing of mis-charged aminoacyl-tRNAs. Here, we characterized the CP1 domain of Leishmania donovani, a protozoan parasite, and its role in editing activity and interaction with broad spectrum anti-fungal, AN2690. The deletion mutant of LRS, devoid of CP1 domain (LRS-CP1Δ) was constructed, followed by determination of its role in editing and aminoacylation. Binding of AN2690 and different amino acids with CP1 deletion mutant and full length LRS was evaluated using isothermal titration calorimetry (ITC) and molecular dynamics simulations. The recombinant LRS-CP1Δ protein did not catalyze the aminoacylation and the editing reaction when compared to full-length LRS. Thus, indicating that CP1 domain was imperative for both aminoacylation and editing activities of LRS. Binding studies with different amino acids indicated selectivity of isoleucine by CP1 domain over other amino acids. These studies also indicated high affinity of AN2690 with the editing domain. Molecular docking studies indicated that AN2690-CP1 domain complex was stabilized by hydrogen bonding and hydrophobic interactions resulting in high binding affinity between the two. Our data suggests CP1 is crucial for the function of L.donovani LRS.


Assuntos
Antiprotozoários/farmacologia , Compostos de Boro/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leishmania donovani/química , Leucina-tRNA Ligase/antagonistas & inibidores , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/antagonistas & inibidores , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Antiprotozoários/química , Sítios de Ligação , Compostos de Boro/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Reposicionamento de Medicamentos , Expressão Gênica , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Leishmania donovani/enzimologia , Leishmania donovani/genética , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Aminoacilação de RNA de Transferência/genética
13.
J Biol Chem ; 295(14): 4563-4576, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32102848

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited. Using bioinformatics analyses, we identified two distinct leucyl-tRNA synthetase (LeuRS) genes within all genomes of the archaeal family Sulfolobaceae. Remarkably, one copy, designated LeuRS-I, had key amino acid substitutions within its editing domain that would be expected to disrupt hydrolytic editing of mischarged tRNALeu and to result in variation within the proteome of these extremophiles. We found that another copy, LeuRS-F, contains canonical active sites for aminoacylation and editing. Biochemical and genetic analyses of the paralogs within Sulfolobus islandicus supported the hypothesis that LeuRS-F, but not LeuRS-I, functions as an essential tRNA synthetase that accurately charges leucine to tRNALeu for protein translation. Although LeuRS-I was not essential, its expression clearly supported optimal S. islandicus growth. We conclude that LeuRS-I may have evolved to confer a selective advantage under the extreme and fluctuating environmental conditions characteristic of the volcanic hot springs in which these archaeal extremophiles reside.


Assuntos
Proteínas Arqueais/metabolismo , Leucina-tRNA Ligase/metabolismo , Sulfolobus/enzimologia , Sequência de Aminoácidos , Aminoacilação , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Domínio Catalítico , Extremófilos/metabolismo , Edição de Genes , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/classificação , Leucina-tRNA Ligase/genética , Mutagênese Sítio-Dirigida , Filogenia , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Sulfolobus/crescimento & desenvolvimento , Temperatura
14.
FEBS J ; 287(4): 800-813, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31486189

RESUMO

Isoleucyl-tRNA synthetase (IleRS) is a paradigm for understanding how specificity against smaller hydrophobic substrates evolved in both the synthetic and editing reactions. IleRS misactivates nonproteinogenic norvaline (Nva) and proteinogenic valine (Val), with a 200-fold lower efficiency than the cognate isoleucine (Ile). Translational errors are, however, prevented by IleRS hydrolytic editing. Nva and Val are both smaller than Ile by a single methylene group. How does the removal of one additional methylene group affects IleRS specificity? We found that the nonproteinogenic α-aminobutyrate (Abu) is activated 30-fold less efficiently than Nva and Val, indicating that the removal of the second methylene group comes with a lower penalty. As with Nva and Val, discrimination against Abu predominantly originated from a higher KM . To examine whether increased hydrophobicity could compensate for the loss of van der Waals interactions, we tested fluorinated Abu analogues. We found that fluorination further hampered activation by IleRS, and even more so by the evolutionary-related ValRS. This suggests that hydrophobicity is not a main driving force of substrate binding in these enzymes. Finally, a discrimination factor of 7100 suggests that IleRS is not expected to edit Abu. However, we found that the IleRS editing domain hydrolyzes Abu-tRNAIle with a rate of 40 s-1 and the introduction of fluorine did not slow down the hydrolysis. This raises interesting questions regarding the mechanism of specificity of the editing domain and its evolution. Understanding what shapes IleRS specificity is also of importance for reengineering translation to accommodate artificial substrates including fluorinated amino acids. ENZYMES: Isoleucyl-tRNA synthetase (EC 6.1.1.5), leucyl-tRNA synthetase (EC 6.1.1.4), valyl-tRNA synthetase (EC 6.1.1.9).


Assuntos
Aminobutiratos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Isoleucina-tRNA Ligase/química , Leucina-tRNA Ligase/química , Valina-tRNA Ligase/química , Aminobutiratos/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Halogenação , Isoleucina-tRNA Ligase/genética , Isoleucina-tRNA Ligase/metabolismo , Cinética , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica , Valina-tRNA Ligase/genética , Valina-tRNA Ligase/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31791947

RESUMO

In this study, we aimed to assess the in vitro susceptibility to GSK656 among multiple mycobacterial species and to investigate the correlation between leucyl-tRNA synthetase (LeuRS) sequence variations and in vitro susceptibility to GSK656 among mycobacterial species. A total of 187 mycobacterial isolates, comprising 105 Mycobacterium tuberculosis isolates and 82 nontuberculous mycobacteria (NTM) isolates, were randomly selected for the determination of in vitro susceptibility. For M. tuberculosis, 102 of 105 isolates had MICs of ≤0.5 mg/liter, demonstrating a MIC50 of 0.063 mg/liter and a MIC90 of 0.25 mg/liter. An epidemiological cutoff value of 0.5 mg/liter was proposed for identification of GSK656-resistant M. tuberculosis strains. For NTM, the MIC50 and MIC90 values were >8.0 mg/liter for both Mycobacterium intracellulare and Mycobacterium avium In contrast, all Mycobacterium abscessus isolates had MICs of ≤0.25 mg/liter, yielding a MIC90 of 0.063 mg/liter. LeuRS from M. abscessus showed greater sequence similarity to M. tuberculosis LeuRS than to LeuRSs from M. avium and M. intracellulare Sequence alignment revealed 28 residues differing between LeuRSs from M. avium and M. intracellulare and LeuRSs from M. tuberculosis and M. abscessus; among them, 15 residues were in the drug binding domain. Structure modeling revealed that several different residues were close to the tRNA-LeuRS interface or the entrance of the drug-tRNA binding pocket. In conclusion, our data demonstrate significant species diversity in in vitro susceptibility to GSK656 among various mycobacterial species. GSK656 has potent efficacy against M. tuberculosis and M. abscessus, whereas inherent resistance was noted for M. intracellulare and M. avium.


Assuntos
Compostos de Boro/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Leucina-tRNA Ligase/genética , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium/efeitos dos fármacos , Humanos , Leucina-tRNA Ligase/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , Filogenia
16.
J Cell Mol Med ; 24(1): 1116-1127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755192

RESUMO

Adipocytes constitute a major component of the tumour microenvironment. Numerous studies have shown that adipocytes promote aggressiveness and invasion by stimulating cancer cells proliferation and modulating their metabolism. Herein, we reported that Notch3 promotes mouse 3T3-L1 pre-adipocytes differentiation by performing the integrative transcriptome and TMT-based proteomic analyses. The results revealed that aminoacyl-tRNA_biosynthesis pathway was significantly influenced with Nocth3 change during 3T3-L1 pre-adipocytes differentiation, and the expression of LARS in this pathway was positively correlated with Notch3. Published studies have shown that LARS is a sensor of leucine that regulates the mTOR pathway activity, and the latter involves in adipogenesis. We therefore supposed that Notch3 might promote 3T3-L1 pre-adipocytes differentiation by up-regulating LARS expression and activating mTOR pathway. CHIP and luciferase activity assay uncovered that Notch3 could transcriptionally regulate the expression of LARS gene. Oil Red staining identified a positive correlation between Notch3 expression and adipocytic differentiation. The activation of mTOR pathway caused by Notch3 overexpression could be attenuated by knocking down LARS expression. Altogether, our study revealed that Notch3 promotes adipocytic differentiation of 3T3-L1 pre-adipocytes cells by up-regulating LARS expression and activating the mTOR pathway, which might be an emerging target for obesity treatment.


Assuntos
Adipócitos/citologia , Adipogenia , Diferenciação Celular , Regulação da Expressão Gênica , Leucina-tRNA Ligase/metabolismo , Receptor Notch3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Biomarcadores/análise , Leucina-tRNA Ligase/genética , Camundongos , Proteoma/análise , Receptor Notch3/genética , Serina-Treonina Quinases TOR/genética , Transcriptoma
17.
ACS Infect Dis ; 5(7): 1231-1238, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31007018

RESUMO

Benzoxaboroles are a class of boron-containing compounds with a broad range of biological activities. A subset of benzoxaboroles have antimicrobial activity due primarily to their ability to inhibit leucyl-tRNA synthetase (LeuRS) via the oxaborole tRNA-trapping mechanism, which involves the formation of a stable tRNALeu-benzoxaborole adduct in which the boron atom interacts with the 2'- and 3'-oxygen atoms of the terminal 3' tRNA adenosine. We sought to identify other antibacterial targets for this promising class of compounds by means of mode-of-action studies, and we selected a nitrophenyl sulfonamide based oxaborole (PT638) as a probe molecule because it had potent antibacterial activity (MIC of 0.4 µg/mL against methicillin-resistant Staphylococcus aureus) but did not inhibit LeuRS (IC50 > 100 µM). Analogues of PT638 were synthesized to explore the importance of the sulfonamide linker and the impact of altering the functionalization of the phenyl ring. These structure-activity-relationship studies revealed that the nitro substituent was essential for activity. To identify the target for PT638, we raised resistant strains of S. aureus, and whole-genome sequencing revealed mutations in leuRS, suggesting that the target for this compound was indeed LeuRS, despite the lack of enzyme inhibition. Subsequent analysis of PT638 metabolism demonstrated that bacterial nitroreductases readily converted this compound into the amino analogue, which inhibited LeuRS with an IC50 of 3.0 ± 1.2 µM, demonstrating that PT638 is thus a prodrug.


Assuntos
Antibacterianos/síntese química , Compostos de Boro/síntese química , Leucina-tRNA Ligase/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Estrutura Molecular , Nitrorredutases/genética , Nitrorredutases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Células Vero , Sequenciamento Completo do Genoma
18.
Artigo em Inglês | MEDLINE | ID: mdl-30509938

RESUMO

We developed a simple, efficient, and cost-effective method, named the replica plating tolerance isolation system (REPTIS), to detect the antibiotic tolerance potential of a bacterial strain. This method can also be used to quantify the antibiotic-tolerant subpopulation in a susceptible population. Using REPTIS, we isolated ciprofloxacin (CPFX)-tolerant mutants (mutants R2, R3, R5, and R6) carrying a total of 12 mutations in 12 different genes from methicillin-sensitive Staphylococcus aureus (MSSA) strain FDA209P. Each mutant carried multiple mutations, while few strains shared the same mutation. The R2 strain carried a nonsense mutation in the stress-mediating gene, relA Additionally, two strains carried the same point mutation in the leuS gene, encoding leucyl-tRNA synthetase. Furthermore, RNA sequencing of the R strains showed a common upregulation of relA Overall, transcriptome analysis showed downregulation of genes related to translation; carbohydrate, fat, and energy metabolism; nucleotide synthesis; and upregulation of amino acid biosynthesis and transportation genes in R2, R3, and R6, similar to the findings observed for the FDA209P strain treated with mupirocin (MUP0.03). However, R5 showed a unique transcription pattern that differed from that of MUP0.03. REPTIS is a unique and convenient method for quantifying the level of tolerance of a clinical isolate. Genomic and transcriptomic analyses of R strains demonstrated that CPFX tolerance in these S. aureus mutants occurs via at least two distinct mechanisms, one of which is similar to that which occurs with mupirocin treatment.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , GTP Pirofosfoquinase/genética , Perfilação da Expressão Gênica/métodos , Humanos , Leucina-tRNA Ligase/genética , Mupirocina/farmacologia , Staphylococcus aureus/isolamento & purificação
19.
Cell Biochem Funct ; 36(8): 431-442, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30411383

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a causal gene of Parkinson disease. G2019S pathogenic mutation increases its kinase activity. LRRK2 regulates various phenotypes including autophagy, neurite outgrowth, and vesicle trafficking. Leucyl-tRNA synthetase (LRS) attaches leucine to tRNALeu and activates mTORC1. Down-regulation of LRS induces autophagy. We investigated the relationship between LRRK2 and LRS in regulating autophagy and observed interaction between endogenous LRRK2 and LRS proteins and LRS phosphorylation by LRRK2. Mutation studies implicated that T293 in the LRS editing domain was a putative phosphorylation site. Phospho-Thr in LRS was increased in cells overexpressing G2019S and dopaminergic neurons differentiated from induced pluripotent stem (iPS) cells of a G2019S carrier. It was decreased by treatment with an LRRK2 kinase inhibitor (GSK2578215A). Phosphomimetic T293D displayed lower leucine bindings than wild type (WT), suggesting its defective editing function. Cellular expression of T293D increased expression of GRP78/BiP, LC3B-II, and p62 proteins and number of LC3 puncta. Increase of GRP78 and phosphorylated LRS was diminished by treatment with GSK2578215A. Levels of LC3B, GRP78/BiP, p62, and α-synuclein proteins were also increased in G2019S transgenic (TG) mice. These data suggest that LRRK2-mediated LRS phosphorylation impairs autophagy by increasing protein misfolding and endoplasmic reticulum stress mediated by LRS editing defect. SIGNIFICANCE OF THE STUDY: Leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of Parkinson disease (PD), and the most prevalent pathogenic mutation, G2019S, increases its kinase activity. In this study, we elucidated that leucyl-tRNA synthetase (LRS) was an LRRK2 kinase substrate and identified T293 as an LRRK2 phosphorylation site. LRRK2-meidated LRS phosphorylation or G2019S can lead to impairment of LRS editing, increased ER stress, and accumulation of autophagy markers. These results demonstrate that LRRK2 kinase activity can facilitate accumulation of misfolded protein, suggesting that LRRK2 kinase might be a potential PD therapeutic target along with previous studies.


Assuntos
Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Leucina-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Aminopiridinas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Encéfalo/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Leucina-tRNA Ligase/genética , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Alinhamento de Sequência , alfa-Sinucleína/metabolismo
20.
J Am Chem Soc ; 140(51): 18093-18103, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30427676

RESUMO

The discovery and optimization of biomolecules that reliably function in metazoan cells is imperative for both the study of basic biology and the treatment of disease. We describe the development, characterization, and proof-of-concept application of a platform for directed evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 7 kb while attaining the mutation rates and enforcing the selection pressure required for successful directed evolution. High mutagenesis rates are continuously attained by trans-complementation of a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic range for directed evolution can be enhanced to several orders of magnitude via application of a small-molecule adenoviral protease inhibitor to modulate selection pressure during directed evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule activity that can be coupled to adenoviral protease expression or activation by simply serially passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to evolve, directly in the human cell environment, several transcription factor variants that maintain high levels of function while gaining resistance to a small-molecule inhibitor. We anticipate that this platform will substantially expand the repertoire of biomolecules that can be reliably and robustly engineered for both research and therapeutic applications in metazoan systems.


Assuntos
Evolução Molecular Direcionada/métodos , Fatores de Transcrição/metabolismo , Adenoviridae/genética , Fagos Bacilares/enzimologia , DNA Polimerase Dirigida por DNA/genética , Doxorrubicina/farmacologia , Resistência a Medicamentos/genética , Células HEK293 , Humanos , Integrases/genética , Leucina-tRNA Ligase/genética , Mutagênese , Peptídeo Hidrolases/genética , Estudo de Prova de Conceito , Engenharia de Proteínas , Fatores de Transcrição/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA