RESUMO
Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.
Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Thermus thermophilus , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequências Repetidas Invertidas , Evolução Molecular , Leveduras/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Piperidinas/farmacologia , Quinazolinonas/farmacologiaRESUMO
Xylanases are the enzymes that catalyze the breakdown of the main hemicellulose present in plant cell walls. They have attracted attention due to their biotechnological potential for the preparation of industrially interesting products from lignocellulose. While many xylanases have been characterized from bacteria and filamentous fungi, information on yeast xylanases is scarce and no yeast xylanase belonging to glycoside hydrolase (GH) family 30 has been described so far. Here, we cloned, expressed and characterized GH30 xylanase SlXyn30A from the yeast Sugiyamaella lignohabitans. The enzyme is active on glucuronoxylan (8.4 U/mg) and rhodymenan (linear ß-1,4-1,3-xylan) (3.1 U/mg) while its activity on arabinoxylan is very low (0.03 U/mg). From glucuronoxylan SlXyn30A releases a series of acidic xylooligosaccharides of general formula MeGlcA2Xyln. These products, which are typical for GH30-specific glucuronoxylanases, are subsequently shortened at the non-reducing end, from which xylobiose moieties are liberated. Xylobiohydrolase activity was also observed during the hydrolysis of various xylooligosaccharides. SlXyn30A thus expands the group of glucuronoxylanases/xylobiohydrolases which has been hitherto represented only by several fungal GH30-7 members.
Assuntos
Hidrolases/metabolismo , Xilosidases/metabolismo , Leveduras/enzimologia , Sequência de Aminoácidos , Hidrolases/química , Homologia de Sequência de AminoácidosRESUMO
RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.
Assuntos
Modelos Moleculares , Conformação Proteica , RNA Polimerase III/química , RNA Polimerase III/metabolismo , Archaea/enzimologia , Sequência Conservada , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , RNA Polimerase III/genética , Relação Estrutura-Atividade , Leveduras/enzimologiaRESUMO
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bactérias/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Oligossacarídeos , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismoRESUMO
Beta-glucosidase is an important enzyme for the hydrolysis of grape glycosides in the course of winemaking. Yeasts are the main producers of ß-glucosidase in winemaking, therefore play an important role in determining wine aroma and flavour. This article discusses common methods for ß-glucosidase evaluation, the ß-glucosidase activity of different Saccharomyces and non- Saccharomyces yeasts and the influences of winemaking conditions, such as glucose and ethanol concentration, low pH environment, fermentation temperature and SO2 level, on their activity. This review further highlights the roles of ß-glucosidase in promoting the release of free volatile compounds especially terpenes and the modification of wine phenolic composition during the winemaking process. Furthermore, this review proposes future research direction in this area and guides wine professionals in yeast selection to improve wine quality.
Assuntos
Proteínas Fúngicas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise , Leveduras/enzimologia , beta-Glucosidase/metabolismo , Proteínas Fúngicas/genética , Odorantes/análise , Fenóis/química , Fenóis/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vitis/microbiologia , Compostos Orgânicos Voláteis/química , Vinho/microbiologia , Leveduras/genética , Leveduras/metabolismo , beta-Glucosidase/genéticaRESUMO
Kluyveromyces lactis is broadly considered as a safe yeast in food and a suitable organism for the production of food enzymes. The K. lactis enzyme production strains of DSM are used to produce a variety of enzymes, for example beta-galactosidase (lactase), chymosin and esterase. All of these production strains are derived from the same lineage, meaning they all originate from the same ancestor strain after classical mutagenesis and/or genetic engineering. Four different enzyme preparations produced with strains within this lineage were toxicologically tested. These enzyme preparations were nontoxic in repeated-dose oral toxicity studies performed in rats and were non-genotoxic in vitro. These studies confirm the safety of the DSM K. lactis strains as a production platform for food enzymes, as well as the safety of the genetic modifications made to these strains through genetic engineering or classical mutagenesis. The outcome of the toxicity studies can be extended to other enzyme preparations produced by any strain from this lineage through read across. Therefore, no new toxicity studies are required for the safety evaluation, as long as the modifications made do not raise safety concerns. Consequently, this approach is in line with the public ambition to reduce animal toxicity studies.
Assuntos
Kluyveromyces/classificação , Kluyveromyces/enzimologia , Testes de Toxicidade/normas , Leveduras/classificação , Leveduras/enzimologia , Engenharia GenéticaRESUMO
Single-stranded DNA breaks, or nicks, are amongst the most common forms of DNA damage in cells. They can be repaired by ligation; however, if a nick occurs just ahead of an approaching replisome, the outcome is a collapsed replication fork comprising a single-ended double-strand break and a 'hybrid nick' with parental DNA on one side and nascent DNA on the other (Figure 1A). We realized that in eukaryotic cells, where replication initiates from multiple replication origins, a fork from an adjacent origin can promote localized re-replication if the hybrid nick is ligated. We have modelled this situation with purified proteins in vitro and have found that there is, indeed, an additional hazard that eukaryotic replisomes face. We discuss how this problem might be mitigated.
Assuntos
Quebras de DNA de Cadeia Simples , DNA Ligases/metabolismo , Replicação do DNA , DNA/biossíntese , DNA/metabolismo , Genoma/genética , Origem de Replicação , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Complexos Multienzimáticos/metabolismo , Leveduras/enzimologia , Leveduras/genéticaRESUMO
My career in research has flourished through hard work, supportive mentors, and outstanding mentees and collaborators. The Carman laboratory has contributed to the understanding of lipid metabolism through the isolation and characterization of key lipid biosynthetic enzymes as well as through the identification of the enzyme-encoding genes. Our findings from yeast have proven to be invaluable to understand regulatory mechanisms of human lipid metabolism. Several rewarding aspects of my career have been my service to the Journal of Biological Chemistry as an editorial board member and Associate Editor, the National Institutes of Health as a member of study sections, and national and international scientific meetings as an organizer. I advise early career scientists to not assume anything, acknowledge others' accomplishments, and pay it forward.
Assuntos
Bioquímica/história , Metabolismo dos Lipídeos , Comportamento Cooperativo , História do Século XX , História do Século XXI , Mentores , Plantas/enzimologia , Leveduras/enzimologiaRESUMO
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2'-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and 'free' pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2'-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Escherichia coli , Metilação , Precursores de RNA/metabolismo , Leveduras/enzimologiaRESUMO
The molecular basis of how temperature affects cell metabolism has been a long-standing question in biology, where the main obstacles are the lack of high-quality data and methods to associate temperature effects on the function of individual proteins as well as to combine them at a systems level. Here we develop and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovers enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) is predicted to be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast strain, we obtain a thermotolerant strain that outgrows the wild type, demonstrating the critical role of sterol metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates modelling of complex biological systems in the absence of high-quality data and therefore shows promise for becoming a standard tool for genome scale modeling.
Assuntos
Teorema de Bayes , Genoma Fúngico , Leveduras/genética , Leveduras/metabolismo , Aprendizado de Máquina , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Temperatura , Leveduras/enzimologia , Leveduras/crescimento & desenvolvimentoRESUMO
To find a potent α-glucosidase inhibitor, 24 tyrosol derivatives with different substituents located at the meta, ortho, or para position of the phenyl group have been synthesised via the Mitsunobu reaction, characterised by 1H NMR, 13C NMR, ESI-MS and IR and evaluated for inhibition. The derivatives possessed varying degrees of in vitro inhibitory activity against α-glucosidase and a relationship between the structure and activity was subsequently established for all compounds. Two of these compounds with substituents at the para position showed significant inhibitory effects surpassing that of the control standard acarbose. Molecular docking studies performed to better understand the binding interactions between the enzyme and the two most active compounds showed substantial binding within the active site of α-glucosidase. Taken together, these results indicate that the position of the substituent plays a crucial role in this inhibition and may facilitate the development of new α-glucosidase inhibitors.
Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Álcool Feniletílico/análogos & derivados , alfa-Glucosidases/metabolismo , Acarbose/química , Acarbose/farmacologia , Sítios de Ligação , Domínio Catalítico , Inibidores de Glicosídeo Hidrolases/química , Álcool Feniletílico/síntese química , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Relação Estrutura-Atividade , Leveduras/enzimologia , alfa-Glucosidases/químicaRESUMO
RNA helicases are ubiquitous, highly conserved RNA-binding enzymes that use the energy derived from the hydrolysis of nucleoside triphosphate to modify the structure of RNA molecules and/or the functionality of ribonucleoprotein complexes. Ultimately, the action of RNA helicases results in changes in gene expression that allow the cell to perform crucial functions. In this chapter, we review established and emerging concepts for DEAD-box and DExH-box RNA helicases. We mention examples from both eukaryotic and prokaryotic systems, in order to highlight common themes and specific actions.
Assuntos
RNA Helicases DEAD-box , Animais , Bactérias/enzimologia , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/fisiologia , Expressão Gênica , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Leveduras/enzimologiaRESUMO
By maintaining intact multi-protein complexes in the gas-phase, native mass spectrometry provides their molecular weight with very good accuracy compared to other methods (typically native PAGE or SEC-MALS) (Marcoux and Robinson, Structure 21:1541-1550, 2013). Besides, heterogeneous samples, in terms of both oligomeric states and ligand-bound species can be fully characterized. Here we thoroughly describe the analysis of several oligomeric protein complexes ranging from a 16 = kDa dimer to a 801-kDa tetradecameric complex on different instrumental setups.
Assuntos
Espectrometria de Massas , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Cromatografia em Gel , DNA/química , RNA Polimerases Dirigidas por DNA/análise , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Espectrometria de Massas/métodos , Peso Molecular , Ligação Proteica , Multimerização Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ultracentrifugação , Leveduras/enzimologiaRESUMO
This study aimed to identify the yeast strains associated with the tree bark samples collected from the Aegean and Marmara regions and from rotten fruit samples. Fifty-one yeast strains were successfully isolated and screened for their abilities to produce industrially important extracellular enzymes. Thirty isolates demonstrated ability to produce at least two different enzymes and were selected for subsequent molecular identification using sequence analysis of ITS region and D1/D2 domain of the 26S rDNA. The most prevalent strains belonged to Papiliotrema laurentii (%23), Papiliotrema terrestris (%13) and Candida membranifaciens (%10). Papiliotrema laurentii and Papiliotrema terrestris recorded the highest enzymatic activities for all the screened enzymes. To the best of our knowledge, this is the first report that identifies the yeast strains associated with the tree barks of Turkey and among the limited comprehensive studies that screened considerable number of isolates for their ability to produce several industrially important enzymes.
Assuntos
Frutas/microbiologia , Microbiologia Industrial , Casca de Planta/microbiologia , Leveduras/enzimologia , Leveduras/genética , DNA Fúngico/genética , Tipagem Molecular , RNA Ribossômico/genética , Turquia , Leveduras/isolamento & purificaçãoRESUMO
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Assuntos
Parede Celular/enzimologia , Enzimas/genética , Enzimas/metabolismo , Evolução Molecular , Leveduras/citologia , Leveduras/enzimologia , Carboidratos/química , Proteoma/metabolismoRESUMO
Synthetic protein-level circuits offer an extra layer of cellular control on top of conventional gene-level circuits. Here, we describe a technology that allows conditional protein rescue (CPR) from proteasomal degradation using different protein inputs as masking agents. A target protein is fused to a degron tag and an affinity sensor domain. The use of nanobodies as the sensor domain offers a generalizable strategy to execute a wide range of protein-level circuits with ease. The utility of this new strategy was successfully demonstrated to distinguish cancer cells out of a healthy population using the HPV-specific E7 protein as a cellular marker. Because CPR can be programmed to execute more complex Boolean logic designs using cell-specific proteomes, this platform offers a highly modular and scalable framework for a wide range of applications based on synthetic protein circuits.
Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas/imunologia , Proteólise , Anticorpos de Domínio Único/imunologia , Antígenos/imunologia , Citosina Desaminase/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Plasmídeos/genética , Pró-Fármacos/metabolismo , Transfecção , Leveduras/enzimologiaRESUMO
Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.
Assuntos
Frutas/microbiologia , Leveduras/classificação , Brasil , DNA Fúngico/genética , DNA Intergênico/genética , Microbiologia Industrial , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico/genética , Leveduras/enzimologia , Leveduras/genética , Leveduras/isolamento & purificaçãoRESUMO
The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.
Assuntos
Nocodazol/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química , Moduladores de Tubulina/farmacologia , Vimblastina/farmacologia , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Borrelia burgdorferi/química , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Citoesqueleto/química , Citoesqueleto/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Lipoproteínas/química , Modelos Moleculares , Fosfoglicerato Quinase/química , Estabilidade Proteica/efeitos dos fármacos , Leveduras/enzimologiaRESUMO
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L-1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L-1), Scheffersomyces sp. (7.94 g L-1) and Spathaspora boniae (7.16 g L-1). Sc. stipitis showed the highest ethanol yield (0.42 g g-1) and the highest productivity (0.39 g L-1h-1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g-1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg-1) and Saitozyma podzolica (0.384 U mg-1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties.
Assuntos
Celulose , Etanol , Saccharum , Madeira , Leveduras , Basidiomycota , Brasil , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Pichia , Saccharomycetales , Saccharum/microbiologia , Madeira/microbiologia , Xilose/metabolismo , Leveduras/enzimologia , Leveduras/isolamento & purificação , Leveduras/metabolismoRESUMO
Chemical investigation of the aerial parts of Cnidoscolus spinosus resulted in the isolation of relatively infrequent hopane-type triterpenes, 3ß-acetoxy-hop-22(29)-ene (1), first reported here as natural product, together with 3-oxo-hop-22(29)-ene (2), and 3ß-hydroxy-hop-22(29)-ene (3). ß-Amyrin palmitate and three phytosterols were also characterized. The structures of the compounds were established using spectroscopic methods, and those of 1 and 2 were confirmed by crystallographic analysis. Selected biological activities for the isolated hopane-type triterpenes were tested through a series of assays for determining the cytotoxic, anti-inflammatory, α-glucosidase inhibition and antiparasitic activities. Compounds 1-3 did not show cytotoxic activity, compound 1 displayed an important inhibitory effect in the mouse ear induced inflammation assay, and significantly inhibited the yeast α-glucosidase activity in vitro and in silico. Additionally, compounds 2 and 3 showed marginal activities against Trypanosoma cruzi and Leishmania mexicana. Therefore, the bioactivities of hopane-type triterpenes deserve further investigation, particularly their anti-inflammatory properties.