Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Eur J Pharmacol ; 973: 176573, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642669

RESUMO

Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos , Levodopa , Oxidopamina , Animais , Masculino , Camundongos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antiparkinsonianos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Captopril/farmacologia , Captopril/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/prevenção & controle , Enalapril/farmacologia , Enalapril/uso terapêutico , Levodopa/toxicidade , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/tratamento farmacológico , Perindopril/farmacologia , Perindopril/uso terapêutico
2.
Neurobiol Dis ; 186: 106278, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683958

RESUMO

L-DOPA-induced dyskinesia (LID) remains a major complication of Parkinson's disease management for which better therapies are necessary. The contribution of the striatonigral direct pathway to LID is widely acknowledged but whether the striatopallidal pathway is involved remains debated. Selective optogenetic stimulation of striatonigral axon terminals induces dyskinesia in mice rendered hemiparkinsonian with the toxin 6-hydroxydopamine (6-OHDA). Here we show that optogenetically-induced dyskinesia is increased by the D2-type dopamine receptor agonist quinpirole. Although the quinpirole effect may be mediated by D2 receptor stimulation in striatopallidal neurons, alternative mechanisms may be responsible as well. To selectively modulate the striatopallidal pathway, we selectively expressed channelrhodopsin-2 (ChR2) in D2 receptor expressing neurons by crossing D2-Cre and ChR2-flox mice. The animals were rendered hemiparkinsonian and implanted with an optic fiber at the ipsilateral external globus pallidus (GPe). Stimulation of ChR2 at striatopallidal axon terminals reduced LID and also general motility during the off L-DOPA state, without modifying the pro-motor effect of low doses of L-DOPA producing mild or no dyskinesia. Overall, the present study shows that D2-type dopamine receptors and the striatopallidal pathway modulate dyskinesia and suggest that targeting striatopallidal axon terminals at the GPe may have therapeutic potential in the management of LID.


Assuntos
Discinesias , Levodopa , Animais , Camundongos , Levodopa/toxicidade , Quimpirol , Agonistas de Dopamina/farmacologia , Oxidopamina/toxicidade , Receptores de Dopamina D2
3.
Neurobiol Dis ; 185: 106238, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495178

RESUMO

L-DOPA-induced dyskinesia (LID) is a frequent adverse side effect of L-DOPA treatment in Parkinson's disease (PD). Understanding the mechanisms underlying the development of these motor disorders is needed to reduce or prevent them. We investigated the role of TrkB receptor in LID, in hemiparkinsonian mice treated by chronic L-DOPA administration. Repeated L-DOPA treatment for 10 days specifically increased full-length TrkB receptor mRNA and protein levels in the dopamine-depleted dorsal striatum (DS) compared to the contralateral non-lesioned DS or to the DS of sham-operated animals. Dopamine depletion alone or acute L-DOPA treatment did not significantly increase TrkB protein levels. In addition to increasing TrkB protein levels, chronic L-DOPA treatment activated the TrkB receptor as evidenced by its increased tyrosine phosphorylation. Using specific agonists for the D1 or D2 receptors, we found that TrkB increase is D1 receptor-dependent. To determine the consequences of these effects, the TrkB gene was selectively deleted in striatal neurons expressing the D1 receptor. Mice with TrkB floxed gene were injected with Cre-expressing adeno-associated viruses or crossed with Drd1-Cre transgenic mice. After unilateral lesion of dopamine neurons in these mice, we found an aggravation of axial LID compared to the control groups. In contrast, no change was found when TrkB deletion was induced in the indirect pathway D2 receptor-expressing neurons. Our study suggests that BDNF/TrkB signaling plays a protective role against the development of LID and that agonists specifically activating TrkB could reduce the severity of LID.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Animais , Levodopa/toxicidade , Antiparkinsonianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Receptor trkB/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D2/metabolismo , Oxidopamina/farmacologia
4.
Neurosci Bull ; 39(9): 1411-1425, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37022638

RESUMO

L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/toxicidade , Dopamina , Transtornos Parkinsonianos/tratamento farmacológico , Oxidopamina , Corpo Estriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Antiparkinsonianos/toxicidade
5.
Mar Drugs ; 20(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447917

RESUMO

As the most abundant marine carotenoid extracted from seaweeds, fucoxanthin is considered to have neuroprotective activity via its excellent antioxidant properties. Oxidative stress is regarded as an important starting factor for neuronal cell loss and necrosis, is one of the causes of Parkinson's disease (PD), and is considered to be the cause of adverse reactions caused by the current PD commonly used treatment drug levodopa (l-DA). Supplementation with antioxidants early in PD can effectively prevent neurodegeneration and inhibit apoptosis in dopaminergic neurons. At present, the effect of fucoxanthin in improving the adverse effects triggered by long-term l-DA administration in PD patients is unclear. In the present study, we found that fucoxanthin can reduce cytotoxicity and suppress the high concentration of l-DA (200 µM)-mediated cell apoptosis in the 6-OHDA-induced PC12 cells through improving the reduction in mitochondrial membrane potential, suppressing ROS over-expression, and inhibiting active of ERK/JNK-c-Jun system and expression of caspase-3 protein. These results were demonstrated by PD mice with long-term administration of l-DA showing enhanced motor ability after intervention with fucoxanthin. Our data indicate that fucoxanthin may prove useful in the treatment of PD patients with long-term l-DA administration.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Levodopa/toxicidade , Camundongos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Oxidopamina/toxicidade , Células PC12 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Xantofilas/farmacologia , Xantofilas/uso terapêutico
6.
Neuroscience ; 492: 92-107, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367290

RESUMO

Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.


Assuntos
Clozapina , Discinesia Induzida por Medicamentos , Amantadina/farmacologia , Animais , Antiparkinsonianos/farmacologia , Cálcio , Clozapina/farmacologia , Corpo Estriado , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/patologia , Levodopa/toxicidade , Camundongos , Neurônios , Oxidopamina/farmacologia
7.
Exp Neurol ; 347: 113920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762921

RESUMO

Parkinson's disease (PD) is a complex multisystem, chronic and so far incurable disease with significant unmet medical needs. The incidence of PD increases with aging and the expected burden will continue to escalate with our aging population. Since its discovery in the 1961 levodopa has remained the gold standard pharmacotherapy for PD. However, the progressive nature of the neurodegenerative process in and beyond the nigrostriatal system causes a multitude of side effects, including levodopa-induced dyskinesia within 5 years of therapy. Attenuating dyskinesia has been a significant challenge in the clinical management of PD. We report on a small molecule that eliminates the expression of levodopa-induced dyskinesia and significantly improves PD-like symptoms. The lead compound PD13R we discovered is a dopamine D3 receptor partial agonist with high affinity and selectivity, orally active and with desirable drug-like properties. Future studies are aimed at developing this lead compound for treating PD patients with dyskinesia.


Assuntos
Antiparkinsonianos/toxicidade , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Callithrix , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/prevenção & controle , Células HEK293 , Humanos , Ligantes , Transtornos Parkinsonianos/prevenção & controle , Primatas , Estrutura Secundária de Proteína , Quimpirol/farmacologia , Quimpirol/uso terapêutico , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química
8.
Transl Vis Sci Technol ; 10(12): 5, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34609478

RESUMO

Purpose: Animal models have demonstrated the role of dopamine in regulating axial elongation, the critical feature of myopia. Because frequent delivery of dopaminergic agents via peribulbar, intravitreal, or intraperitoneal injections is not clinically viable, we sought to evaluate ocular penetration and safety of the topically applied dopaminergic prodrug etilevodopa. Methods: The ocular penetration of dopamine and dopaminergic prodrugs (levodopa and etilevodopa) were quantified using an enzyme-linked immunosorbent assay in enucleated porcine eyes after a single topical administration. The pharmacokinetic profile of the etilevodopa was then assessed in rats. A four-week once-daily application of etilevodopa as a topical eye drop was conducted to establish its safety profile. Results: At 24 hours, the studied prodrugs showed increased dopaminergic derivatives in the vitreous of porcine eyes. Dopamine 0.5% (P = 0.0123) and etilevodopa 10% (p = 0.370) achieved significant vitreous concentrations. Etilevodopa 10% was able to enter the posterior segment of the eye after topical administration in rats with an intravitreal half-life of eight hours after single topical administration. Monthly application of topical etilevodopa showed no alterations in retinal ocular coherence tomography, electroretinography, caspase staining, or TUNEL staining. Conclusions: At similar concentrations, no difference in ocular penetration of levodopa and etilevodopa was observed. However, etilevodopa was highly soluble and able to be applied at higher topical concentrations. Dopamine exhibited both high solubility and enhanced penetration into the vitreous as compared to other dopaminergic prodrugs. Translational Relevance: These findings indicate the potential of topical etilevodopa and dopamine for further study as a therapeutic treatment for myopia.


Assuntos
Levodopa , Pró-Fármacos , Animais , Dopamina , Levodopa/análogos & derivados , Levodopa/toxicidade , Penetrância , Pró-Fármacos/toxicidade , Ratos , Retina , Suínos
9.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2381-2388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550406

RESUMO

PURPOSE: Antagonising serotonin (5-HT) type 2A receptors (5-HT2AR) is an effective strategy to alleviate both dyskinesia and psychosis in Parkinson's disease (PD). We have recently shown that activation of metabotropic glutamate 2 receptors (mGluR2), via either orthosteric stimulation or positive allosteric modulation, enhances the anti-dyskinetic and anti-psychotic effects of 5-HT2AR antagonism. Here, we investigated if greater therapeutic efficacy would be achieved by combining 5-HT2AR antagonism with concurrent mGluR2 orthosteric stimulation and mGluR2 positive allosteric modulation. METHODS: Five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and psychosis-like behaviours (PLBs) were administered L-3,4-dihydroxyphenylalanine (L-DOPA) in combination with vehicle or the 5-HT2AR antagonist EMD-281,014. EMD-281,014 was itself administered alone or with the mGluR2 orthosteric agonist (OA) LY-354,740, the mGluR2 positive allosteric modulator (PAM) LY-487,379 and combination thereof, after which the severity of dyskinesia, PLBs and parkinsonism was rated. RESULTS: EMD-281,014 reduced dyskinesia and PLBs by up to 47% and 40%, respectively (both P < 0.001). The addition of LY-354,740, LY-487,379 and LY-354,740/LY-487,379 decreased dyskinesia by 56%, 65% and 77%, while PLBs were diminished by 55%, 63% and 71% (all P < 0.001). All treatment combinations provided anti-dyskinetic and anti-psychotic benefits significantly greater than those conferred by EMD-281,014 alone (all P < 0.05). The combination of EMD-281,014/LY-354,740/LY-487,379 resulted in anti-dyskinetic and anti-psychotic effects significantly greater than those conferred by EMD-281,014 with either LY-354,740 or LY-487,379 (both P < 0.05). No deleterious effects on L-DOPA anti-parkinsonian action were observed. CONCLUSION: Our results suggest that combining 5-HT2AR antagonism with mGluR2 activation results in greater reduction of L-DOPA-induced dyskinesia and PD psychosis. They also indicate that further additive effect can be achieved when a mGluR2 OA and a mGluR2 PAM are combined with a 5-HT2AR antagonist than when a mGluR2 OA or a mGluR2 PAM are added to a 5-HT2AR antagonist.


Assuntos
Antiparkinsonianos/farmacologia , Levodopa/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/toxicidade , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos com Pontes/administração & dosagem , Compostos Bicíclicos com Pontes/farmacologia , Callithrix , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Indóis/administração & dosagem , Indóis/farmacologia , Levodopa/administração & dosagem , Levodopa/toxicidade , Masculino , Transtornos Parkinsonianos/psicologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Transtornos Psicóticos/etiologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
10.
Cells ; 10(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207710

RESUMO

Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson's disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.


Assuntos
Corpo Estriado , Metilação de DNA/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/toxicidade , Riluzol , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Ratos , Ratos Wistar , Riluzol/farmacologia , Riluzol/uso terapêutico
11.
J Parkinsons Dis ; 11(3): 1257-1269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33998548

RESUMO

BACKGROUND: The gold-standard treatment for Parkinson's disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a "false neurotransmitter". The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. OBJECTIVE: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed "off" L-DOPA. METHODS: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. RESULTS: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. CONCLUSION: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson's disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Antiparkinsonianos/toxicidade , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1685-1692, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963876

RESUMO

Parkinson's disease (PD) psychosis afflicts over half of patients and poses a significant burden on quality of life. The aetiology of PD psychosis is multifactorial and likely arises from the complex interaction between dopamine replacement therapy and disease state. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset is a validated model to predict the efficacy of therapeutic compounds for treatment-related complications, including PD psychosis. In this model, psychosis-like behaviours (PLBs) encompass stereotypies that are idiosyncratic in nature and reproducible with each L-3,4-dihydroxyphenylanaline (L-DOPA) administration. In the present study, we sought to expand upon the existing repertoire of PLBs through the characterisation of novel stereotypical behaviours that appear dependent on the environment. We then discuss our findings in the context of clinical reports on stereotypical behaviours termed "punding" in subjects with PD, which consists of stereotypical repetitive and senseless behaviours. The poor understanding of the pathophysiology governing punding and consequent lack of effective therapies stand to benefit from enhanced characterisation of these stereotypical behaviours in a validated pre-clinical model. We hope that further characterisation of PLBs in the MPTP-lesioned marmoset will be helpful in the evaluation of interventions that seek to alleviate PD psychosis symptoms.


Assuntos
Antiparkinsonianos/toxicidade , Levodopa/toxicidade , Transtornos Parkinsonianos/psicologia , Transtornos Psicóticos/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Comportamento Animal/efeitos dos fármacos , Callithrix , Modelos Animais de Doenças , Feminino , Masculino , Transtornos Parkinsonianos/fisiopatologia , Transtornos Psicóticos/etiologia
13.
Exp Neurol ; 342: 113740, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971218

RESUMO

In Parkinson's disease (PD), long-term administration of L-dopa often leads to L-dopa-induced dyskinesia (LID), a debilitating motor complication. The p75 neurotrophin receptor (p75NTR) is likely to play a critical role in the regulation of dendritic spine density and morphology and appears to be associated with neuroinflammation, which previously has been identified as a crucial mechanism in LID. While aberrant modifications of p75NTR in neurological diseases have been extensively documented, only a few studies report p75NTR dysfunction in PD, and no data are available in LID. Here, we explored the functional role of p75NTR in LID. In LID rats, we identified that p75NTR was significantly increased in the lesioned striatum. In 6-hydroxydopamine (6-OHDA)-hemilesioned rats, specific knockdown of striatal p75NTR levels achieved by viral vector injection into the striatum prevented the development of LID and increased striatal structural plasticity. By contrast, we found that in 6-OHDA-hemilesioned rats, striatal p75NTR overexpression exacerbated LID and facilitated striatal dendritic spine losses. Moreover, we observed that the immunomodulatory drug fingolimod attenuated LID without lessening the therapeutic efficacy of L-dopa and normalized p75NTR levels. Together, these data demonstrate for the first time that p75NTR plays a pivotal role in the development of LID and that p75NTR may act as a potential novel target for the management of LID.


Assuntos
Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Proteínas do Tecido Nervoso/biossíntese , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptores de Fatores de Crescimento/biossíntese , Animais , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
14.
Neurotox Res ; 39(3): 705-719, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33687725

RESUMO

Interferon-γ (IFN-γ) is a proinflammatory cytokine that activates glial cells. IFN-γ is increased in the plasma and brain of Parkinson's disease patients, suggesting its potential role in the disease. We investigated whether the IFN-γ deficiency could interfere with nigrostriatal degeneration induced by the neurotoxin 6-hydroxydopamine, L-DOPA-induced dyskinesia, and the neuroinflammatory features as astrogliosis, microgliosis, and induced nitric oxide synthase (iNOS) immunoreactivity induced by L-DOPA treatment. Wild type (WT) and IFN-γ knockout (IFN-γ/KO) mice received unilateral striatal microinjections of 6-hydroxydopamine. Animals were sacrificed 1, 3, 7, and 21 days after lesions. Additional group of WT and IFN-γ/KO parkinsonian mice, after 3 weeks of neurotoxin injection, received L-DOPA (intraperitoneally, for 21 days) resulting in dyskinetic-like behavior. Tyrosine hydroxylase immunostaining indicated the starting of dopaminergic lesion since the first day past toxin administration, progressively increased until the third day when it stabilized. There was no difference in the lesion and L-DOPA-induced dyskinesia intensity between WT and IFN-γ/KO mice. Remarkably, IFN-γ/KO mice treated with L-DOPA presented in the lesioned striatum an increase of iNOS and glial fibrilary acid protein (GFAP) density, compared with the WT group. Morphological analysis revealed the rise of astrocytes and microglia reactivity in IFN-γ/KO mice exibiting dyskinesia. In conclusion, IFN-γ/KO mice presented an intensification of the inflammatory reaction accompanying L-DOPA treatment and suggest that iNOS and GFAP increase, and the activation of astrocytes and microglia induced afterward L-DOPA treatment was IFN-γ independent events. Intriguingly, IFN-γ absence did not affect the degeneration of dopaminergic neurons or LID development.


Assuntos
Antiparkinsonianos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/deficiência , Levodopa/toxicidade , Transtornos Parkinsonianos/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/patologia , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidopamina/toxicidade , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia
15.
Exp Neurol ; 340: 113670, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662379

RESUMO

L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks-long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 h. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine's therapeutic effects are region specific. Our findings also have clinical implications, as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/fisiopatologia , Ritmo Gama/efeitos dos fármacos , Ketamina/uso terapêutico , Levodopa/toxicidade , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antiparkinsonianos/toxicidade , Relação Dose-Resposta a Droga , Ritmo Gama/fisiologia , Ketamina/farmacologia , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Sprague-Dawley
16.
J Neurosci ; 41(12): 2668-2683, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563724

RESUMO

l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.


Assuntos
Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/toxicidade , Transmissão Sináptica/fisiologia , Animais , Gânglios da Base/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transmissão Sináptica/efeitos dos fármacos
17.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R541-R546, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533311

RESUMO

Physical exercise attenuates the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injections of 6-hydroxydopamine (12 µg) and were treated after 3 wk with l-DOPA/benserazide (25/12.5 mg/kg) for 4 wk, with individualized moderate-intensity running (60%-70% V̇o2peak) or not (untrained). l-DOPA converted the pattern of plasticity in corticostriatal synapses from a long-term depression (LTD) into a long-term potentiation (LTP). Exercise reduced LID severity and decreased aberrant LTP. These results suggest that exercise attenuates abnormal corticostriatal plasticity to decrease LID.


Assuntos
Antiparkinsonianos/toxicidade , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/prevenção & controle , Terapia por Exercício , Levodopa/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Benserazida/toxicidade , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Di-Hidroxifenilalanina/análogos & derivados , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Corrida , Fatores de Tempo
18.
Behav Pharmacol ; 32(1): 43-53, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399295

RESUMO

Administration of L-3,4-dihydroxyphenylalanine (L-DOPA) provides Parkinson's disease patients with effective symptomatic relief. However, long-term L-DOPA therapy is often marred by complications such as dyskinesia. We have previously demonstrated that serotonin type 3 (5-HT3) receptor blockade with the clinically available and highly selective antagonist ondansetron alleviates dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat. Here, we sought to explore the antidyskinetic efficacy of granisetron, another clinically available 5-HT3 receptor antagonist. Rats were rendered hemi-parkinsonian by 6-OHDA injection in the medial forebrain bundle. Following induction of stable abnormal involuntary movements (AIMs), granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) or vehicle was acutely administered in combination with L-DOPA and the severity of AIMs, both duration and amplitude, was determined. We also assessed the effect of granisetron on L-DOPA antiparkinsonian action by performing the cylinder test. Adding granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) to L-DOPA resulted in a significant reduction of AIMs duration and amplitude, with certain parameters being reduced by as much as 38 and 45% (P < 0.05 and P < 0.001, respectively). The antidyskinetic effect of granisetron was not accompanied by a reduction of L-DOPA antiparkinsonian action. These results suggest that 5-HT3 blockade may reduce L-DOPA-induced dyskinesia without impairing the therapeutic efficacy of L-DOPA. However, a U-shaped dose-response curve obtained with certain parameters may limit the therapeutic potential of this strategy and require further investigation.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Granisetron/farmacologia , Levodopa/toxicidade , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/toxicidade , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Feminino , Granisetron/administração & dosagem , Levodopa/farmacologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT3 de Serotonina/administração & dosagem
19.
Mov Disord ; 36(5): 1137-1146, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460487

RESUMO

BACKGROUND: Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l-dopa)-induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. METHODS: We used mouse and non-human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l-dopa administration and to establish a causative link between impaired autophagy and dyskinesia. RESULTS: We found that l-dopa-induced dyskinesia is associated with accumulation of the autophagy-specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l-dopa-mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l-dopa, and reduced dyskinesia. The anti-dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor-expressing striatal neurons, through inactivation of the autophagy-related gene protein 7. CONCLUSIONS: These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l-dopa-induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Animais , Antiparkinsonianos/toxicidade , Autofagia , Corpo Estriado , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Humanos , Levodopa/toxicidade , Camundongos , Oxidopamina
20.
Mov Disord ; 36(4): 938-947, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33135810

RESUMO

BACKGROUND: Levodopa (l-dopa) is the frontline treatment for motor symptoms of Parkinson's disease. However, prolonged use of l-dopa results in a motor complication known as levodopa-induced dyskinesia (LID) in ~50% of patients over 5 years. OBJECTIVES: We investigated neurovascular abnormalities in a rat model of LID by examining changes in angiogenesis and dopamine-dependent vessel diameter changes. METHODS: Differences in striatal and nigral angiogenesis in a parkinsonian rat model (6-OHDA lesion) treated with 2 doses of l-dopa (saline, 2, and 10 mg/kg/day subcutaneous l-dopa treatment for 22 days) by 5-bromo-2'-deoxyuridine (BrdU)-RECA1 co-immunofluorescence. Difference in the vasomotor response to dopamine was examined with 2-photon laser scanning microscopy and Dodt gradient imaging. RESULTS: We found that the 10 mg/kg l-dopa dosing regimen induced LID in all animals (n = 5) and induced significant angiogenesis in the striatum and substantia nigra. In contrast, the 2 mg/kg treatment induced LID in 6 out of 12 rats and led to linearly increasing LID severity over the 22-day treatment period, making this a promising model for studying LID progression longitudinally. However, no significantly different level of angiogenesis was observed between LID versus non-LID animals. Dopamine-induced vasodilatory responses were exaggerated only in rats that show LID-like signs compared to the rest of groups. Additionally, in juvenile rats, we showed that DA-induced vasodilation is preceded by increased Ca2+ release in the adjacent astrocytes. CONCLUSION: This finding supports that astrocytic dopamine signaling controls striatal blood flow bidirectionally, and the balance is altered in LID. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/toxicidade , Corpo Estriado , Modelos Animais de Doenças , Dopamina , Humanos , Levodopa/toxicidade , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA