Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652336

RESUMO

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Assuntos
Arabidopsis , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Espécies Reativas de Oxigênio , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Citrus/microbiologia , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidade , Liberibacter/fisiologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Resistência à Doença/genética
2.
J Proteome Res ; 23(8): 2857-2869, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38373055

RESUMO

Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.


Assuntos
Citrus sinensis , Hemípteros , Doenças das Plantas , Proteômica , Rhizobiaceae , Transcriptoma , Animais , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Citrus sinensis/parasitologia , Hemípteros/microbiologia , Hemípteros/genética , Hemípteros/metabolismo , Insetos Vetores/microbiologia , Insetos Vetores/metabolismo , Liberibacter/patogenicidade , Liberibacter/genética , Liberibacter/metabolismo , Metabolômica/métodos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteoma/análise , Proteômica/métodos , Rhizobiaceae/patogenicidade , Rhizobiaceae/genética , Rhizobiaceae/fisiologia
3.
BMC Microbiol ; 22(1): 52, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148684

RESUMO

Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.


Assuntos
Biofilmes/crescimento & desenvolvimento , Citrus/microbiologia , Viabilidade Microbiana , Pressão Osmótica , Doenças das Plantas/microbiologia , Liberibacter/patogenicidade , Liberibacter/fisiologia , Fatores de Tempo
4.
Virology ; 567: 47-56, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998225

RESUMO

Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.


Assuntos
Citrus/microbiologia , Flavivirus/genética , Hemípteros/virologia , Insetos Vetores/virologia , Liberibacter/genética , Ninfa/virologia , Animais , DNA Bacteriano/genética , Feminino , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Intestinos/microbiologia , Intestinos/virologia , Liberibacter/patogenicidade , Ninfa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , RNA Viral/genética , Glândulas Salivares/microbiologia , Glândulas Salivares/virologia , Simbiose/fisiologia
5.
BMC Plant Biol ; 21(1): 397, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433413

RESUMO

BACKGROUND: Mandarin 'Shatangju' is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin 'Shatangju' variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB. RESULTS: the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, ß-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles. CONCLUSIONS: Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.


Assuntos
Clorofila/análise , Citrus/genética , Citrus/microbiologia , Flavonoides/análise , Frutas/microbiologia , Interações Hospedeiro-Patógeno , Liberibacter/patogenicidade , Pigmentos Biológicos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Produtos Agrícolas/fisiologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
6.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445707

RESUMO

The gram-negative bacterial genus Liberibacter includes economically important pathogens, such as 'Candidatus Liberibacter asiaticus' that cause citrus greening disease (or Huanglongbing, HLB) and 'Ca. Liberibacter solanacearum' (Lso) that cause zebra chip disease in potato. Liberibacter pathogens are fastidious bacteria transmitted by psyllids. Pathogen manipulation of the host' and vector's immune system for successful colonization is hypothesized to be achieved by Sec translocon-dependent effectors (SDE). In previous work, we identified hypothetical protein effector 1 (HPE1), an SDE from Lso, that acts as a suppressor of the plant's effector-triggered immunity (ETI)-like response. In this study, using a yeast two-hybrid system, we identify binding interactions between tomato RAD23 proteins and HPE1. We further show that HPE1 interacts with RAD23 in both nuclear and cytoplasmic compartments in planta. Immunoblot assays show that HPE1 is not ubiquitinated in the plant cell, but rather the expression of HPE1 induced the accumulation of other ubiquitinated proteins. A similar accumulation of ubiquitinated proteins is also observed in Lso infected tomato plants. Finally, earlier colonization and symptom development following Lso haplotype B infection are observed in HPE1 overexpressing plants compared to wild-type plants. Overall, our results suggest that HPE1 plays a role in virulence in Lso pathogenesis, possibly by perturbing the ubiquitin-proteasome system via direct interaction with the ubiquitin-like domain of RAD23 proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Liberibacter/metabolismo , Solanum lycopersicum/metabolismo , DNA Bacteriano , Liberibacter/enzimologia , Liberibacter/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Canais de Translocação SEC/metabolismo , Solanum tuberosum/microbiologia , Proteínas Ubiquitinadas
7.
Mol Plant Microbe Interact ; 34(11): 1281-1297, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34319773

RESUMO

The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reduced mobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylase were expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Daucus carota , Hemípteros , Interações Hospedeiro-Patógeno , Liberibacter , Animais , Daucus carota/genética , Daucus carota/microbiologia , Interações Hospedeiro-Patógeno/genética , Liberibacter/genética , Liberibacter/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526689

RESUMO

Citrus Huanglongbing (HLB), caused by a vector-transmitted phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease worldwide. Currently, there are no effective strategies to prevent infection or to cure HLB-positive trees. Here, using comparative analysis between HLB-sensitive citrus cultivars and HLB-tolerant citrus hybrids and relatives, we identified a novel class of stable antimicrobial peptides (SAMPs). The SAMP from Microcitrusaustraliasica can rapidly kill Liberibacter crescens (Lcr), a culturable Liberibacter strain, and inhibit infections of CLas and CL. solanacearum in plants. In controlled greenhouse trials, SAMP not only effectively reduced CLas titer and disease symptoms in HLB-positive trees but also induced innate immunity to prevent and inhibit infections. Importantly, unlike antibiotics, SAMP is heat stable, making it better suited for field applications. Spray-applied SAMP was taken up by citrus leaves, stayed stable inside the plants for at least a week, and moved systemically through the vascular system where CLas is located. We further demonstrate that SAMP is most effective on α-proteobacteria and causes rapid cytosol leakage and cell lysis. The α-helix-2 domain of SAMP is sufficient to kill Lcr Future field trials will help determine the efficacy of SAMP in controlling HLB and the ideal mode of application.


Assuntos
Citrus/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Rutaceae/química , Citrus/microbiologia , Resistência à Doença/genética , Liberibacter/efeitos dos fármacos , Liberibacter/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética
9.
Plant Cell Rep ; 40(3): 529-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386424

RESUMO

KEY MESSAGE: Overexpression of CiNPR4 enhanced resistance of transgenic citrus plants to Huanglongbing by perceiving the salicylic acid and jasmonic acid signals and up-regulating the transcriptional activities of plant-pathogen interaction genes. Developing transgenic citrus plants with enhanced immunity is an efficient strategy to control citrus Huanglongbing (HLB). Here, a nonexpressor of pathogenesis-related gene 1 (NPR1) like gene from HLB-tolerant 'Jackson' grapefruit (Citrus paradisi Macf.), CiNPR4, was introduced into 'Wanjincheng' orange (Citrus sinensis Obseck). CiNPR4 expression was determined in transgenic citrus plants using quantitative real-time PCR analyses. The Candidatus Liberibacter asiaticus (CLas) pathogen of HLB was successfully transmitted to transgenic citrus plants by grafting infected buds. HLB symptoms developed in transgenic and wild-type (WT) plants by 9 months after inoculation. A CLas population analysis showed that 26.9% of transgenic lines exhibited significantly lower CLas titer levels compared with the CLas-infected WT plants at 21 months after inoculation. Lower starch contents and anatomical aberration levels in the phloem were observed in transgenic lines having enhanced resistance compared with CLas-infected WT plants. CiNPR4 overexpression changed the jasmonic acid, but not salicylic acid, level. Additionally, the jasmonic acid and salicylic acid levels increased after CLas infection. Transcriptome analyses revealed that the enhanced resistance of transgenic plants to HLB resulted from the up-regulated transcriptional activities of plant-pathogen interaction-related genes.


Assuntos
Citrus paradisi/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/microbiologia , Citrus paradisi/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Liberibacter/patogenicidade , Oxilipinas/metabolismo , Floema/anatomia & histologia , Floema/genética , Filogenia , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Amido/genética , Amido/metabolismo
10.
Sci Rep ; 10(1): 20865, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257732

RESUMO

Huanglongbing (HLB), caused mainly by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.


Assuntos
Citrus sinensis/genética , Doenças das Plantas/genética , Poncirus/genética , Transcriptoma/genética , Citrus sinensis/microbiologia , Suscetibilidade a Doenças/microbiologia , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Liberibacter/patogenicidade , Doenças das Plantas/microbiologia , Poncirus/microbiologia , Fatores de Transcrição/genética
11.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121168

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that knockdown of the NbDDX3 gene triggers leaf chlorosis, mimicking the primary symptom of CLas infection in N. benthamiana. The interactions between SDE1 and NbDDX3 were localized in the cell membrane. Overexpression of SDE1 resulted in suppression of NbDDX3 gene expression in N. benthamiana, which suggests a critical role of SDE1 in modulating NbDDX3 expression. Furthermore, we verified the interaction of SDE1 with citrus DDX3 (CsDDX3), and demonstrated that the expression of the CsDDX3 gene was significantly reduced in HLB-affected yellowing and mottled leaves of citrus. Thus, we provide molecular evidence that the downregulation of the host DDX3 gene is a crucial mechanism of leaf chlorosis in HLB-affected plants. The identification of CsDDX3 as a critical target of SDE1 and its association with HLB symptom development indicates that the DDX3 gene is an important target for gene editing, to interrupt the interaction between DDX3 and SDE1, and therefore interfere host susceptibility.


Assuntos
Citrus/microbiologia , RNA Helicases DEAD-box/metabolismo , Liberibacter/patogenicidade , Necrose e Clorose das Plantas/microbiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citrus/genética , Citrus/metabolismo , RNA Helicases DEAD-box/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Liberibacter/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
12.
Mol Plant Microbe Interact ; 33(12): 1394-1404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32986514

RESUMO

Sec-delivered effector 1 (SDE1) from the huanglongbing (HLB)-associated bacterium 'Candidatus Liberibacter asiaticus' was previously characterized as an inhibitor of defense-related, papain-like cysteine proteases in vitro and in planta. Here, we investigated the contributions of SDE1 to HLB progression. We found that SDE1 expression in the model plant Arabidopsis thaliana caused severe yellowing in mature leaves, reminiscent of both 'Ca. L. asiaticus' infection symptoms and accelerated leaf senescence. Induction of senescence signatures was also observed in the SDE1-expressing A. thaliana lines. These signatures were apparent in older leaves but not in seedlings, suggesting an age-associated effect. Furthermore, independent lines of transgenic Citrus paradisi (L.) Macfadyen (Duncan grapefruit) that express SDE1 exhibited hypersusceptibility to 'Ca. L. asiaticus'. Similar to A. thaliana, transgenic citrus expressing SDE1 showed altered expression of senescence-associated genes, but only after infection with 'Ca. L. asiaticus'. These findings suggest that SDE1 is a virulence factor that contributes to HLB progression, likely by inducing premature or accelerated senescence in citrus. This work provides new insight into HLB pathogenesis.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Liberibacter , Doenças das Plantas , Arabidopsis/microbiologia , Citrus/microbiologia , Liberibacter/genética , Liberibacter/metabolismo , Liberibacter/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Plant Physiol ; 184(4): 2216-2239, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32843523

RESUMO

Huanglongbing (HLB) is a devastating citrus disease worldwide that is putatively caused by Candidatus Liberibacter asiaticus and transmitted by Diaphorina citri Melatonin is a ubiquitously distributed auxin-like metabolite found in both prokaryotes and eukaryotes. In this study, we used integrative metabolomic and transcriptomic approaches to investigate the potential role of melatonin in citrus response against HLB and to understand the relationships between melatonin and the stress-associated phytohormones at molecular and metabolic levels. Melatonin was detected in the leaves of Valencia sweet orange (Citrus sinensis) after derivatization with N-methyl-N-trimethylsilyltrifluoroacetamide using a targeted gas chromatography-mass spectrometry running in selective ion monitoring mode-based method. Ca. L. asiaticus infection and D. citri infestation significantly increased endogenous melatonin levels in Valencia sweet orange leaves and upregulated the expression of its biosynthetic genes (CsTDC, CsT5H, CsSNAT, CsASMT, and CsCOMT). However, infection with Ca. L. asiaticus had a greater effect than did infestation with D. citri Melatonin induction was positively correlated with salicylic acid content, but not that of trans-jasmonic acid. Moreover, melatonin supplementation enhanced the endogenous contents of the stress-associated phytohormones (salicylates, auxins, trans-jasmonic acid, and abscisic acid) and the transcript levels of their biosynthetic genes. Furthermore, melatonin supplementation diminished the Ca. L. asiaticus titer within the infected leaves, which suggests that melatonin might play an antibacterial role against this bacterium and gram-negative bacteria in general. These findings provide a better understanding of the melatonin-mediated defensive response against HLB via modulation of multiple hormonal pathways. Understanding the role of melatonin in citrus defense to HLB may provide a novel therapeutic strategy to mitigate the disease.


Assuntos
Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Liberibacter/patogenicidade , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Metabolômica , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo
14.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423116

RESUMO

Citrus huanglongbing (HLB) is a destructive disease that causes significant damage to many citrus producing areas worldwide. To date, no strategy against this disease has been established. Inosine 5'-monophosphate dehydrogenase (IMPDH) plays crucial roles in the de novo synthesis of guanine nucleotides. This enzyme is used as a potential target to treat bacterial infection. In this study, the crystal structure of a deletion mutant of CLas IMPDHΔ98-201 in the apo form was determined. Eight known bioactive compounds were used as ligands for molecular docking. The results showed that bronopol and disulfiram bound to CLas IMPDHΔ98-201 with high affinity. These compounds were tested for their inhibition against CLas IMPDHΔ98-201 activity. Bronopol and disulfiram showed high inhibition at nanomolar concentrations, and bronopol was found to be the most potent molecule (Ki = 234 nM). The Ki value of disulfiram was 616 nM. These results suggest that bronopol and disulfiram can be considered potential candidate agents for the development of CLas inhibitors.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Dissulfiram/química , Inibidores Enzimáticos/química , IMP Desidrogenase/química , Propilenoglicóis/química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Citrus/efeitos dos fármacos , Citrus/microbiologia , Clonagem Molecular , Cristalografia por Raios X , Dissulfiram/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo , Cinética , Liberibacter/enzimologia , Liberibacter/genética , Liberibacter/patogenicidade , Ligantes , Simulação de Acoplamento Molecular , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Propilenoglicóis/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
15.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443846

RESUMO

Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is effective to reduce the occurrence of new infections and mitigate disease severity in the presence of HLB disease. We also studied the associated molecular mechanism and found that acid soil improvement can (i) increase the root metabolic activity and up-regulate the expression of ion transporter-related genes in HLB-infected roots, (ii) alleviate the physiological disorders of sieve tube blockage of HLB-infected leaves, (iii) strengthen the citrus immune response by increasing the expression of genes involved in SAR and activating the salicylic acid signal pathway, (iv) up-regulate 55 proteins related to stress/defence response and secondary metabolism. This study contributes to a better understanding of the correlation between environment factors and HLB disease outbreaks and also suggests that acid soil improvement is of potential value for the management of HLB disease in southern China.


Assuntos
Citrus/imunologia , Produção Agrícola/métodos , Resistência à Doença , Genes de Plantas , Solo/química , Ácidos/análise , Citrus/genética , Citrus/microbiologia , Liberibacter/patogenicidade
16.
Plant Physiol ; 182(2): 882-891, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818905

RESUMO

Citrus greening or Huanglongbing (HLB) is caused by the phloem-limited intracellular Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas). HLB-infected citrus phloem cells undergo structural modifications that include cell wall thickening, callose and phloem protein induction, and cellular plugging. However, very little is known about the intracellular mechanisms that take place during CLas cell-to-cell movement. Here, we show that CLas movement through phloem pores of sweet orange (Citrus sinensis) and grapefruit (Citrus paradisi) is carried out by the elongated form of the bacteria. The round form of CLas is too large to move, but can change its morphology to enable its movement. CLas cells adhere to the plasma membrane of the phloem cells specifically adjacent to the sieve pores. Remarkably, CLas was present in both mature sieve element cells and nucleated nonsieve element cells. The sieve plate plugging structures of host plants were shown to have different composition in different citrus tissues. Callose deposition was the main plugging mechanism in the HLB-infected flush, where it reduced the open space of the pores. In the roots, pores were surrounded by dark extracellular material, with very little accumulation of callose. The expression of CALLOSE SYNTHASE7 and PHLOEM PROTEIN2 genes was upregulated in the shoots, but downregulated in root tissues. In seed coats, no phloem occlusion was observed, and CLas accumulated to high levels. Our results provide insight into the cellular mechanisms of Gram-negative bacterial cell-to-cell movement in plant phloem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citrus/microbiologia , Glucosiltransferases/metabolismo , Liberibacter/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Lectinas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Glucanos/metabolismo , Glucosiltransferases/genética , Liberibacter/patogenicidade , Microscopia Eletrônica de Transmissão , Floema/genética , Floema/metabolismo , Floema/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Lectinas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Sementes/genética , Sementes/metabolismo
17.
Cienc. tecnol. salud ; 7(2): 205-217, 2020. il 27 c
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1348154

RESUMO

La punta morada es una enfermedad que afecta la producción de algunas especies de solanáceas como la papa y el tomate, causando enrollamiento en las puntas de las hojas con una marcada coloración morada, decaimiento temprano de la planta y en la papa se observa tuberización aérea. Como patógenos asociados a la enfermedad se consideran al fitoplasma BLTVA y la bacteria Candidatus Liberibacter solanacearum. Dada la similitud en la sin-tomatología foliar que generan ambos patógenos, es difícil precisar cuál de ellos está implicado en la enfermedad. En Guatemala, existen reportes de la sintomatología típica de punta morada en las principales zonas productoras de papa y tomate, desconociéndose el agente asociado. La investigación determinó cuál de los dos patógenos reportados está asociados a la enfermedad en 12 municipios productores de papa y/o tomate en el país. Se realizaron ampli-ficaciones de ADN con cebadores específicos para cada patógeno asociado a la enfermedad. Por la alta incidencia del fitoplasma BLTVA en las muestras de papa (73.9%), en comparación a C. Liberibacter solanacearum (26%), este es considerado como el patógeno asociado más importante en papa. En las muestras de tomate, la incidencia del fitoplasma BLTVA (29.8%) y C. Liberibacter solanacearum del (27.6%) fue similar. Además, sobresale el primer reporte de la detección del fitoplasma BLTVA afectando el cultivo de tomate en Guatemala. Se sugiere un monitoreo constante, mediante métodos moleculares, para un diagnóstico certero y establecer medidas de manejo de la enfermedad para evitar su diseminación hacia zonas aún no afectadas.


The potato purple top is a disease that affects the production of some solanaceous species such as potatoes and tomatoes, causing curl at the tips of the leaves with a marked purple coloration, early decay of the plant, and aerial tuberization is observed in the potato. BLTVA phytoplasma and Candidatus Liberibacter solanacearum are considered as pathogens associated with the disease. Given the similarity in foliar symptoms generated by both pathogens, it is difficult to determine which one is involved in the disease. There are reports of the typical potato purple top symptoms in the main potato and tomato producing areas in Guatemala, being unknown the associated agent. The research determined which of the two reported pathogens is associated with the disease in 12 potatoes and/or tomato producing areas in the country. We performed DNA amplification with specific primers for each disease-associated pathogen. Due to the high incidence of BLTVA phytoplasma in potato samples (73.9%), com-pared to C. liberibacter solanacearum (26%), this is considered the most important associated pathogen in potatoes. In tomato samples, the incidence of BLTVA phytoplasma (29.8%) and C. liberibacter solanacearum (27.6%) was similar. Besides, the first report of the detection of the BLTVA phytoplasma affecting tomato cultivation in Gua-temala stands out. Using molecular methods, constant monitoring is suggested for an accurate diagnosis and to establish management measures for the disease to prevent its spread to areas not yet affected.


Assuntos
Solanum tuberosum/virologia , Solanaceae/virologia , Doenças por Fitoplasmas/microbiologia , Vírus de Plantas/isolamento & purificação , Produção Agrícola , DNA de Plantas/análise , Liberibacter/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA