Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.668
Filtrar
1.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733416

RESUMO

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Assuntos
Mapeamento Cromossômico , Colletotrichum , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Colletotrichum/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Fenótipo , Ligação Genética , Genes de Plantas , Melhoramento Vegetal
2.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38736249

RESUMO

Phenotypic mutants are valuable resources for elucidating the function of genes responsible for their expression. This study examined mutant rice strains expressing three traits: spotted leaf 6 (spl6), lax panicle (lax), and liguleless (lg). In the mutant, the spl6 phenotype was a genetically programmed lesion-mimicking mutation (LMM) that displayed spontaneously scattered spots across the leaf surface. In the lg trait, the plant lacked a collar region, and there were no auricles and ligules at the junction of the leaf blade and leaf sheath. The lax panicle trait manifested as sparely arranged spikelets resulting from the terminal spikelet with no lateral spikelets, which caused a drastic reduction of the total seed number in the mutant. All three mutant genes were genetically recessive and had nuclear gene regulation. The dihybrid segregation of the lg gene was classified independently according to the Mendelian 9:3:3:1 dihybrid segregation ratio in the F2 generation, suggesting that the lg gene is not linked to the same chromosome as the lax and spl6 genes. On the other hand, spl6 and lax were not assorted independently, indicating that they are closely linked on chromosome 1 in rice. Additional linkage analysis from the recombination of spl6 and lax genes reconfirmed that the two genes were ~9.4 cM away from each other. The individual single-gene mutant plant from one plant with a three-gene mutation (spl6, lax, and lg) was isolated and characterized, which will be a crucial resource for the gene cloning and molecular characterization of these genes.


Assuntos
Genes de Plantas , Ligação Genética , Mutação , Oryza , Fenótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731906

RESUMO

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Assuntos
Mapeamento Cromossômico , Glycine max , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico/métodos , Fenótipo , Cromossomos de Plantas/genética , Ligação Genética , Genótipo
4.
BMC Plant Biol ; 24(1): 435, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773410

RESUMO

BACKGROUND: Afforestation of non-forestland is a new measure by the European Union to enhance climate mitigation and biodiversity. Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is among the suitable tree species for afforestation to produce woody biomass. However, the best performing genotypic material for intensive biomass production and its physiological adaptation capacity is still unclear. We compared 22 hybrid aspen genotypes growth and leaf physiological characteristics (stomatal conductance, net photosynthesis, intrinsic water-use efficiency) according to their geographical north- or southward transfer (European P. tremula parent from 51° to 60° N and North American P. tremuloides parent from 45° to 54° N) to hemiboreal Estonia (58° N) in a completely randomized design progeny trial. We tested whether the growth ranking of genotypes of different geographical origin has changed from young (3-year-old) to mid-rotation age (13-year-old). The gas exchange parameters were measured in excised shoots in 2021 summer, which was characterised with warmer (+ 4 °C) and drier (17% precipitation from normal) June and July than the long-term average. RESULTS: We found that the northward transfer of hybrid aspen genotypes resulted in a significant gain in growth (two-fold greater diameter at breast height) in comparison with the southward transfer. The early selection of genotypes was generally in good accordance with the middle-aged genotype ranking, while some of the northward transferred genotypes showed improved growth at the middle-age period in comparison with their ranking during the early phase. The genotypes of southward transfer demonstrated higher stomatal conductance, which resulted in higher net photosynthesis, and lower intrinsic water-use efficiency (iWUE) compared with northward transfer genotypes. However, higher photosynthesis did not translate into higher growth rate. The higher physiological activity of southern transferred genotypes was likely related to a better water supply of smaller and consequently more shaded trees under drought. Leaf nitrogen concentration did not have any significant relation with tree growth. CONCLUSIONS: We conclude that the final selection of hybrid aspen genotypes for commercial use should be done in 10-15 years after planting. Physiological traits acquired during periods of droughty conditions may not fully capture the growth potential. Nonetheless, we advocate for a broader integration of physiological measurements alongside traditional traits (such as height and diameter) in genotype field testing to facilitate the selection of climate-adapted planting material for resilient forests.


Assuntos
Genótipo , Folhas de Planta , Populus , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Populus/genética , Populus/crescimento & desenvolvimento , Populus/fisiologia , Fotossíntese/genética , Hibridização Genética , Ligação Genética
5.
Nat Genet ; 56(5): 869-876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714868

RESUMO

Insufficient thyroid hormone production in newborns is referred to as congenital hypothyroidism. Multinodular goiter (MNG), characterized by an enlarged thyroid gland with multiple nodules, is usually seen in adults and is recognized as a separate disorder from congenital hypothyroidism. Here we performed a linkage analysis of a family with both nongoitrous congenital hypothyroidism and MNG and identified a signal at 15q26.1. Follow-up analyses with whole-genome sequencing and genetic screening in congenital hypothyroidism and MNG cohorts showed that changes in a noncoding TTTG microsatellite on 15q26.1 were frequently observed in congenital hypothyroidism (137 in 989) and MNG (3 in 33) compared with controls (3 in 38,722). Characterization of the noncoding variants with epigenomic data and in vitro experiments suggested that the microsatellite is located in a thyroid-specific transcriptional repressor, and its activity is disrupted by the variants. Collectively, we presented genetic evidence linking nongoitrous congenital hypothyroidism and MNG, providing unique insights into thyroid abnormalities.


Assuntos
Cromossomos Humanos Par 15 , Hipotireoidismo Congênito , Repetições de Microssatélites , Linhagem , Humanos , Hipotireoidismo Congênito/genética , Repetições de Microssatélites/genética , Feminino , Masculino , Cromossomos Humanos Par 15/genética , Bócio Nodular/genética , Adulto , Glândula Tireoide/patologia , Glândula Tireoide/metabolismo , Ligação Genética
6.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709317

RESUMO

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Assuntos
Mapeamento Cromossômico , Fenótipo , Folhas de Planta , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/anatomia & histologia , Mapeamento Cromossômico/métodos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Marcadores Genéticos , Cromossomos de Plantas/genética , Melhoramento Vegetal , Ligação Genética , Genes de Plantas
7.
BMC Plant Biol ; 24(1): 271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605289

RESUMO

BACKGROUND: Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS: The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS: A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION: This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.


Assuntos
Agropyron , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Agropyron/genética , Melhoramento Vegetal , Ligação Genética , Triticum/genética , Fenótipo , Grão Comestível/genética
8.
Zhonghua Yi Xue Za Zhi ; 104(16): 1351-1355, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644282

RESUMO

IgA nephropathy is the most common primary glomerulonephritis worldwide, and genetic factors may play an important role in its pathogenesis. Following candidate gene association analysis and genome-wide linkage study, genome-wide association studies (GWAS) have found multiple susceptibility genes related to the pathogenesis and clinical phenotype of IgA nephropathy. Meanwhile, structural variation and epigenetic changes are also closely related to IgA nephropathy. Genetic variants have been found to explain about 11% of its heritability. In the current era of genomic medicine, how to find more susceptible genes/loci, whole genome sequencing studies (WGS) provide clues to further understand the genetic variation of IgA nephropathy. How to find the cell type-specific susceptibility genes associated with IgA nephropathy, multi-omics studies will conduct comprehensive analysis via single-cell sequencing, expression quantitative trait locus (eQTL) and genomics to find the pathogenic genes and offer insights into the development of targeted drugs, which will be the trend and direction of future research.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA , Locos de Características Quantitativas , Glomerulonefrite por IGA/genética , Humanos , Variação Genética , Ligação Genética , Genômica , Epigênese Genética
9.
Theor Appl Genet ; 137(5): 113, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678511

RESUMO

KEY MESSAGE: The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.


Assuntos
Aegilops , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Puccinia , Aegilops/genética , Aegilops/microbiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Introgressão Genética , Ligação Genética , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Puccinia/fisiologia , Triticum/genética , Triticum/microbiologia
10.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
11.
BMC Plant Biol ; 24(1): 306, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644480

RESUMO

Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.


Assuntos
Mapeamento Cromossômico , Genótipo , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
12.
Methods Mol Biol ; 2787: 169-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656489

RESUMO

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Assuntos
Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Ligação Genética , Software , Endogamia , Cromossomos de Plantas/genética
13.
Methods Mol Biol ; 2787: 153-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656488

RESUMO

Genetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F2 and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.g., inbred lines). Also, the dihaploid (DH) population is often used in plants, but obtaining DHs in different crops, including rye, is very difficult or even impossible. Any molecular marker system can be used for genotyping. Polymorphic markers are used for linkage analysis, differentiating parental forms with segregation in the mapping population, consistent with the appropriate single-gene model. A genetic map is a great source of information on a species and can be an exquisite tool for analyzing important quantitative traits (QT).This chapter presents the procedure of genetic map construction with two different algorithms using the JoinMap5.0 program. First, the Materials section briefly informs about the mapping program, showing how to obtain a mapping population and prepare data for mapping. Finally, the Methods section describes the protocol for the mapping procedure itself.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Algoritmos , Cruzamentos Genéticos , Genótipo , Marcadores Genéticos , Software , Cromossomos de Plantas/genética
14.
PLoS One ; 19(4): e0299825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593174

RESUMO

Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.


Assuntos
Ocimum basilicum , Locos de Características Quantitativas , Humanos , Ocimum basilicum/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Genômica , Polimorfismo de Nucleotídeo Único , Ligação Genética
15.
BMC Genomics ; 25(1): 414, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671371

RESUMO

BACKGROUND: Growth rate is a crucial economic trait for farmed animals, but the genetic regulation of this trait is largely unknown in non-model organisms such as shrimp. RESULTS: In this study, we performed genome-wide phenotypic quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) mapping analyses to identify genes affecting the growth rate of Pacific white shrimp (Litopenaeus vannamei), which is the most commercially-farmed crustacean worldwide. We used RNA-sequencing of 268 individuals in a mapping population, and subsequently validated our findings through gene silencing and shrimp growth experiments. We constructed a high-density genetic linkage map comprising 5533 markers spanning 44 linkage groups, with a total distance of 6205.75 cM and an average marker interval of 1.12 cM. Our analyses identified 11 QTLs significantly correlated with growth rate, and 117,525 eQTLs. By integrating QTL and eQTL data, we identified a gene (metalloreductase STEAP4) highly associated with shrimp growth rate. RNA interference (RNAi) analysis and growth experiments confirmed that STEAP4 was significantly correlated with growth rate in L. vannamei. CONCLUSIONS: Our results indicate that the comprehensive analysis of QTL and eQTL can effectively identify genes involved in complex animal traits. This is important for marker-assisted selection (MAS) of animals. Our work contributes to the development of shrimp breeding and available genetic resources.


Assuntos
Mapeamento Cromossômico , Penaeidae , Locos de Características Quantitativas , Animais , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Fenótipo , Ligação Genética , Estudo de Associação Genômica Ampla , Interferência de RNA
16.
Sci Rep ; 14(1): 9606, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670987

RESUMO

Coix lacryma-jobi L. is one of the most economically and medicinally important corns. This study constructed a high-density genetic linkage map of C. lacryma-jobi based on a cross between the parents 'Qianyi No. 2' × 'Wenyi No. 2' and their F2 progeny through high-throughput sequencing and the construction of a specific-locus amplified fragment (SLAF) library. After pre-processing, 325.49 GB of raw data containing 1628 M reads were obtained. A total of 22,944 high-quality SLAFs were identified, among which 3952 SLAFs and 3646 polymorphic markers met the requirements for the construction of a genetic linkage map. The integrated map contained 3605 high-quality SLAFs, which were grouped into ten genetic linkage groups. The total length of the map was 1620.39 cM, with an average distance of 0.45 cM and an average of 360.5 markers per linkage group. This report presents the first high-density genetic map of C. lacryma-jobi. This map was constructed using an F2 population and SLAF-seq approach, which allows the development of a large number of polymorphic markers in a short period. These results provide a platform for precise gene/quantitative trait locus (QTL) mapping, map-based gene separation, and molecular breeding in C. lacryma-jobi. They also help identify a target gene for tracking, splitting quantitative traits, and estimating the phenotypic effects of each QTL for QTL mapping. They are of great significance for improving the efficiency of discovering and utilizing excellent gene resources of C. lacryma-jobi.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Locos de Características Quantitativas , Sequenciamento de Nucleotídeos em Larga Escala/métodos
17.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673973

RESUMO

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Oryza , Fenótipo , Locos de Características Quantitativas , Oryza/genética , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Cromossomos de Plantas/genética , Genes de Plantas
18.
Genes (Basel) ; 15(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38674378

RESUMO

Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.


Assuntos
Enxaqueca com Aura , Humanos , Enxaqueca com Aura/genética , Mutação , Predisposição Genética para Doença , Canal de Sódio Disparado por Voltagem NAV1.1/genética , ATPase Trocadora de Sódio-Potássio/genética , Ligação Genética , Canais de Cálcio/genética
19.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614108

RESUMO

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Humanos , Feminino , Masculino , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , Pessoa de Meia-Idade , Idoso , Ligação Genética/genética , Adulto , Canadá/epidemiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Tunísia , Predisposição Genética para Doença/genética , Sequenciamento do Exoma , Estudos de Casos e Controles , Genótipo
20.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542350

RESUMO

Kernel row number (KRN) is a crucial trait in maize that directly influences yield; hence, understanding the mechanisms underlying KRN is vital for the development of high-yielding inbred lines and hybrids. We crossed four excellent panicle inbred lines (CML312, CML444, YML46, and YML32) with Ye107, and after eight generations of selfing, a multi-parent population was developed comprising four subpopulations, each consisting of 200 lines. KRN was accessed in five environments in Yunnan province over three years (2019, 2021, and 2022). The objectives of this study were to (1) identify quantitative trait loci and single nucleotide polymorphisms associated with KRN through linkage and genome-wide association analyses using high-quality genotypic data, (2) identify candidate genes regulating KRN by identifying co-localized QTLs and SNPs, and (3) explore the pathways involved in KRN formation and identify key candidate genes through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Our study successfully identified 277 significant Quantitative trait locus (QTLs) and 53 significant Single Nucleotide Polymorphism (SNPs) related to KRN. Based on gene expression, GO, and KEGG analyses, SNP-177304649, SNP-150393177, SNP-135283055, SNP-138554600, and SNP-120370778, which were highly likely to be associated with KRN, were identified. Seven novel candidate genes at this locus (Zm00001d022420, Zm00001d022421, Zm00001d016202, Zm00001d050984, Zm00001d050985, Zm00001d016000, and Zm00014a012929) are associated with KRN. Among these, Zm00014a012929 was identified using the reference genome Mo17. The remaining six genes were identified using the reference genome B73. To our knowledge, this is the first report on the association of these genes with KRN in maize. These findings provide a theoretical foundation and valuable insights into the genetic mechanisms underlying maize KRN and the development of high-yielding hybrids through heterosis.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Zea mays/genética , Ligação Genética , China , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA