Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.510
Filtrar
1.
Int J Oral Sci ; 16(1): 38, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734708

RESUMO

Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Estresse Oxidativo , Periodontite , Ubiquitinação , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ubiquitinação/efeitos dos fármacos , Ratos , Masculino , Modelos Animais de Doenças , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Humanos , Imunoprecipitação da Cromatina , Western Blotting , Reação em Cadeia da Polimerase em Tempo Real , Simulação de Acoplamento Molecular , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia
2.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727958

RESUMO

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Assuntos
Fosfatases de Especificidade Dupla , Inflamação , Lipopolissacarídeos , MicroRNAs , Ligamento Periodontal , Células-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células-Tronco/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/genética , Células Cultivadas
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731950

RESUMO

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Assuntos
Ligamento Periodontal , Análise de Célula Única , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Análise de Célula Única/métodos , Células Cultivadas , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Masculino , Feminino , Perfilação da Expressão Gênica/métodos , Adulto , Transcriptoma , Análise da Expressão Gênica de Célula Única
4.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692246

RESUMO

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Assuntos
Proliferação de Células , Colágeno , Fibroblastos , Hialuronoglucosaminidase , Miofibroblastos , Ligamento Periodontal , Fator de Crescimento Transformador beta , Animais , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Hialuronoglucosaminidase/farmacologia , Ratos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Actinas/metabolismo , Western Blotting , Técnicas In Vitro , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Masculino , RNA Mensageiro/metabolismo
5.
J Bone Miner Res ; 39(1): 59-72, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630879

RESUMO

Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of ß-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of ß-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.


Assuntos
Osteogênese , Periodontite , Adulto , Camundongos , Humanos , Animais , beta Catenina/metabolismo , Ligamento Periodontal/metabolismo , Inflamação , Via de Sinalização Wnt/fisiologia , Diferenciação Celular , Células Cultivadas
6.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597077

RESUMO

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Assuntos
Implantes Dentários , Osteogênese , Ligamento Periodontal/metabolismo , Titânio/metabolismo , Titânio/farmacologia , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia
7.
Arch Oral Biol ; 163: 105974, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636252

RESUMO

OBJECTIVES: The aim of this study was to investigate the regulatory role of G protein subunit alpha i3 (GNAI3) in periodontitis. DESIGN: Following the induction of human periodontal ligament stem cells (hPDLSCs) with lipopolysaccharide (LPS), the mRNA and protein expressions of GNAI3 and Lin28A were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. The transfection efficiency of Oe-GNAI3 and sh-Lin28A was examined by virtue of RT-qPCR and western blot. With the application of ELISA and flow cytometry, the releases of inflammatory cytokines and cell apoptosis were appraised. Alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining were conducted to evaluate osteogenic differentiation. Next, the binding ability of Lin28A with GNAI3 mRNA was estimated by radioimmunoprecipitation (RIP) assay while the stability of GNAI3 mRNA was assessed utilizing RT-qPCR. Western blot was employed for the measurement of inflammation-, apoptosis- and nuclear factor-kappaB (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway-related proteins and osteogenic markers. RESULTS: The expression of GNAI3 was down-regulated in LPS-induced hPDLSCs. After the transfection with Oe-GNAI3, the inflammation and apoptosis in LPS-induced hPDLSCs were inhibited while osteogenic differentiation was promoted. Moreover, Lin28A could stabilize GNAI3 mRNA and Lin28A knockdown significantly reduced GNAI3 expression. Further experiments verified that the inhibitory effects of GNAI3 overexpression on LPS-induced cellular inflammation and cell apoptosis as well as the promotive effects on osteogenic differentiation in hPDLSCs were all partially counteracted by Lin28A depletion, which may possibly be mediated via the regulation of the NF-κB/NLRP3 inflammasome pathway. CONCLUSION: GNAI3 that mediated by Lin28A regulates the inflammation and osteogenic differentiation in LPS-induced hPDLSCs by mediating the NF-κB/NLRP3 inflammasome pathway.


Assuntos
Diferenciação Celular , Inflamassomos , Lipopolissacarídeos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteogênese , Ligamento Periodontal , Proteínas de Ligação a RNA , Células-Tronco , Humanos , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Inflamassomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Western Blotting , Inflamação/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Apoptose/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Periodontite/metabolismo , Citometria de Fluxo , Transdução de Sinais , Células Cultivadas
8.
Shanghai Kou Qiang Yi Xue ; 33(1): 40-48, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583023

RESUMO

PURPOSE: To explore the cytotoxic effect of a menthol-favored E-liquid on human periodontal ligament stem cells (hPDLSCs), as well as the underlying mechanism of electronic cigarette (E-cig)-induced cell apoptosis. METHODS: PDLSCs were isolated and cultured from periodontal ligament tissues of healthy premolars extracted for orthodontic reasons. Cells in passage 3 were used to detect the surface markers of stem cells by flow cytometry. Then the cells were exposed to different doses of menthol-favored E-liquid (at 59 mg/L nicotine concentration) in the culture median (the final nicotine concentrations were 0.1 µg/mL, 1.0 µg/mL, 10 µg/mL, 50 µg/mL, 0.1 mg/mL, 0.2 mg/mL and 0.5 mg/mL, respectively) for different period of times (24, 48 and 72 h). The cell viability was analyzed by CCK-8 assay. Cell apoptosis was evaluated by flow cytometry (7-AAD and Annexin V staining) and TUNEL assay. Reactive oxygen species (ROS) production was detected with fluorescence probe DCFH-DA by confocal microscopy and flow cytometry. The protein expression levels associated with ROS/JNK/caspase 3 axis(p-JNK, JNK, c-Jun, p-c-Jun, Bcl-2, Bax and cleaved-caspase 3) were analyzed by Western blot. Immunocytofluorescense staining was applied to evaluate the expression level of p-JNK. After addition of NAC, a ROS scavenger, and MAPK/JNK specific blocker SP600125, their effects on E-cig-induced cell apoptosis were evaluated. Statistical analysis was performed with Graph Pad 5.0 software package. RESULTS: Human PDLSCs were successfully isolated and cultured and flow cytometry assay showed the mesenchymal stem cell surface biomarkers (CD73, CD90 and CD105) were positively expressed. CCK8 assay indicated cell viability was significantly(P<0.001) different among all concentration groups at various time points (24, 48 or 72 h), and the difference in apoptosis rate among all concentration groups was also statistically significant (P<0.001). After exposure to E-liquid with nicotine concentration ≥50 µg/mL, cell viability was significantly reduced, and the proportion of apoptotic cells and the cellular ROS level was significantly increased in a dose-dependent manner as compared with the control group(0.0 mg/mL). Western blot assay showed E-cig exposure could promote MAPK/JNK phosphorylation in a dose-dependent and time-dependent manner. Either NAC or SP600125 could partially rescue the E-cig-induced cell apoptosis via reversing up-regulation of p-JNK and cleaved caspase 3. CONCLUSIONS: ROS/JNK/caspase 3 axis is involved in menthol-favored E-liquid-induced apoptosis of hPDLSCs.


Assuntos
Antracenos , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Mentol/farmacologia , Ligamento Periodontal/metabolismo , Nicotina/efeitos adversos , Apoptose , Células-Tronco/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 192-196, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650134

RESUMO

To identify the differentially important genes of human periodontal ligament cells (PDLC) in response to different types of force, the dataset with regard to human PDLC in response to force was retrieved from the GEO. Differentially expressed genes (DEG) analysis between mechanical force (MF) and the control group was conducted. The gene set enrichment analysis (GSEA) was applied to identify the functional enrichment in different MF groups. Weighted gene co-expression network analysis (WGCNA) of transcriptomic data was performed to identify the highly correlated genes in human PDLC in response to MF. The Lasso regression model was applied to screen the key genes. Results showed A total of 2861 DEGs were identified between the MF group and control group, including 1470 up-regulated DEGs and 1391 down-regulated DEGs. Different biological processes were enriched between the static group and the intermittent group. The Myc targets, TGF-ß signaling pathway and PI3K/AKT/MTOR signaling pathway were enriched in intermittent-MF and static-MF groups. The turquoise module (including 386 hub genes) in WGCNA was highly correlated with intermittent traits and the black module (including 33 hub genes) was positively correlated with static traits. The lasso analysis result showed that the CLIC4, NPLOC4 and PRDX6 had the greatest impact on the human PDLC with mechanic stimuli with good predictive efficiency. In conclusion, we developed important genes for human PDLC in response to MF, which might be potential markers for orthodontic tooth movement.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ligamento Periodontal , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Perfilação da Expressão Gênica/métodos , Estresse Mecânico , Transcriptoma/genética , Transdução de Sinais/genética , Regulação da Expressão Gênica
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 83-88, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650150

RESUMO

This study aimed to investigate the hub genes and miRNA-mRNA regulatory network around periodontal ligament stem cells (PDLSC) for osteogenic differentiation through bioinformatic analysis. The dataset with osteogenic differentiation of human PDLSC was downloaded from the GEO database. The Weighted gene coexpression network analysis (WGCNA) was performed to identify key modules and hub genes. In addition, differentially expressed genes (DEGs) analysis was conducted with limma. The functional enrichment of differentially expressed hub genes was implemented with KEGG and GSEA analysis. The targeted genes of differentially expressed miRNA were predicted based on miRWalk database. The miRNA-mRNA interaction network of osteogenic differentiation of PDLSC was constructed and visualized. The WGNCA results showed that the light-cyan module was positively correlated with osteogenic differentiation (r=0.98, P<0.05). A total of 3125 hub genes and 1426 differentially expressed hub genes were detected in OG group. Innate immune-related signaling pathways and metabolic pathways were involved in the osteogenic differentiation. In addition, total of 2 upregulated miRNAs with 63 targeted DEGs and 6 downregulated miRNAs with 214 targeted DEGs were detected, which contributed to osteogenic differentiation by regulating amino acid metabolism signaling pathway. We identified hub genes and miRNA-mRNA regulatory network contributing to osteogenic differentiation of human PDLSC, which will provide novel strategy for periodontal disease therapy.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , MicroRNAs , Osteogênese , Ligamento Periodontal , RNA Mensageiro , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Regulação da Expressão Gênica , Transdução de Sinais/genética
11.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565043

RESUMO

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Assuntos
Fator de Crescimento Insulin-Like II , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Periodontite , Animais , Humanos , Masculino , Camundongos , Regeneração Óssea/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/imunologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais
12.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 453-462, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38636999

RESUMO

Objective: To investigate the mechanism of proanthocyanidin (PA) in regulating the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs), and to explore the effects of PA on the expression and nuclear translocation of transcription factor EB (TFEB) and on the autophagy-lysosome pathway. Methods: PDLSCs were divided into control group and PA group, which were subjected to RNA sequencing analysis (RNA Seq) to detect differentially expressed genes. The osteogenic differentiation ability and autophagy level were observed by real-time fluorescence quantitative PCR (RT-qPCR) analysis, alkaline phosphatase (ALP) staining and transmission electron microscope (TEM), respectively. Scratch assay and Transwell assay were used to detect the migration ability of PDLSCs. Lysotracker and immunofluorescence staining were used to detect the biogenesis of lysosomes. The total protein expression of transcription factor EB (TFEB) as well as that in cytoplasm and nucleus were detected by Western blotting. Confocal laser scanning microscope (CLSM) was used to observe the nuclear translocation of TFEB. The PDLSCs were treated with small interfering RNA (siRNA) technology to knock down the expression levels of TFEB gene with or without PA treatment. Western blotting was used to analyze the expressions of autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3 (LC3B), as well as osteogenic-related proteins runt-related transcription factor 2 (RUNX2), ALP, and osteocalcin in PDLSCs. Results: Compared with the control group, the osteogenic-related and autophagy-related genes showed differential expression in PDLSCs after PA treatment (P<0.05). The mRNA expression levels of osteogenic-related genes RUNX2 (2.32±0.15) and collagen type Ⅰ alpha 1 (COL1α1) (1.80±0.18), as well as the autophagy related genes LC3B (1.87±0.08) and Beclin1 (1.63±0.08) were significantly increased in the PA group, compared with the control group (1.01±0.16, 1.00±0.10, 1.00±0.07, 1.00±0.06, respectively, all P<0.01). Compared with the control group, the PA group had higher ALP activity, and more autophagosomes and autophagolysosomes observed by TEM. PA promoted the migration of PDLSCs (P<0.05) and the increased number of lysosomes and the expression of lysosomal associated membrane protein 1 (LAMP1). In the PA group, the relative expression level of total TFEB protein (1.49±0.07) and the nuclear/cytoplasmic expression of TFEB protein (1.52±0.12) were significantly higher than the control group (1.00±0.11, 1.00±0.13, respectively) (t=6.43, P<0.01; t=5.07, P<0.01). The relative nuclear/cytoplasmic fluorescence intensity of TFEB in the PA group (0.79±0.09) was increased compared with the control group (0.11±0.08) (t=8.32, P<0.01). Knocking down TFEB significantly reduced the expression of TFEB (1.00±0.15 vs 0.64±0.04), LAMP1 (1.00±0.10 vs 0.69±0.09), Beclin1 (1.00±0.05 vs 0.60±0.05), and LC3B Ⅱ/Ⅰ (1.00±0.06 vs 0.73±0.07) in PDLSCs (P<0.05, P<0.05, P<0.01, P<0.01). When TFEB gene was knocked down, the expression levels of Beclin1 (1.05±0.11), LC3B Ⅱ/Ⅰ (1.02±0.09), RUNX2 (1.04±0.10), ALP (1.04±0.16), and osteocalcin (1.03±0.15) proteins were significantly decreased in the PA group compared with the pre-knockdown period (1.28±0.03, 1.44±0.11, 1.38±0.11, 1.62±0.11, 1.65±0.17, respectively) (P<0.05, P<0.01, P<0.05, P<0.01, and P<0.01, respectively). Conclusions: PA promotes the osteogenic differentiation of PDLSCs through inducing the expression and nuclear translocation of TFEB and activating the autophagy-lysosome pathway.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Lisossomos , Osteogênese , Ligamento Periodontal , Proantocianidinas , Células-Tronco , Humanos , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Lisossomos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Proantocianidinas/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fosfatase Alcalina/metabolismo , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
13.
Biomed Pharmacother ; 174: 116599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640711

RESUMO

OBJECTIVE: The aim of this study was to produce and characterize triple-layered cell sheet constructs with varying cell compositions combined or not with the fibrin membrane scaffold obtained by the technology of Plasma Rich in Growth Factors (mPRGF). MATERIALS AND METHODS: Human primary cultures of periodontal ligament stem cells (hPDLSCs) were isolated, and their stemness nature was evaluated. Three types of triple-layered composite constructs were generated, composed solely of hPDLSCs or combined with human umbilical vein endothelial cells (HUVECs), either as a sandwiched endothelial layer or as coculture sheets of both cell phenotypes. These three triple-layered constructs were also manufactured using mPRGF as cell sheets' support. Necrosis, glucose consumption, secretion of extracellular matrix proteins and synthesis of proangiogenic factors were determined. Histological evaluations and proteomic analyses were also performed. RESULTS: The inclusion of HUVECs did not clearly improve the properties of the multilayered constructs and yet hindered their optimal conformation. The presence of mPRGF prevented the shrinkage of cell sheets, stimulated the metabolic activity and increased the matrix synthesis. At the proteome level, mPRGF conferred a dramatic advantage to the hPDLSC constructs in their ability to provide a suitable environment for tissue regeneration by inducing the expression of proteins necessary for bone morphogenesis and cellular proliferation. CONCLUSIONS: hPDLSCs' triple-layer construct onto mPRGF emerges as the optimal structure for its use in regenerative therapeutics. CLINICAL RELEVANCE: These results suggest the suitability of mPRGF as a promising tool to support cell sheet formation by improving their handling and biological functions.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Peptídeos e Proteínas de Sinalização Intercelular , Ligamento Periodontal , Células-Tronco , Alicerces Teciduais , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Alicerces Teciduais/química , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Técnicas de Cocultura , Proteômica , Plasma/metabolismo
14.
Sci Rep ; 14(1): 9851, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684732

RESUMO

Static magnetic field (SMF) promoting bone tissue remodeling is a potential non-invasive therapy technique to accelerate orthodontic tooth movement (OTM). The periodontal ligament stem cells (PDLSCs), which are mechanosensitive cells, are essential for force-induced bone remodeling and OTM. However, whether and how the PDLSCs influence the process of inflammatory bone remodeling under mechanical force stimuli in the presence of SMFs remains unclear. In this study, we found that local SMF stimulation significantly enhanced the OTM distance and induced osteoclastogenesis on the compression side of a rat model of OTM. Further experiments with macrophages cultured with supernatants from force-loaded PDLSCs exposed to an SMF showed enhanced osteoclast formation. RNA-seq analysis showed that interleukin-6 (IL-6) was elevated in force-loaded PDLSCs exposed to SMFs. IL-6 expression was also elevated on the pressure side of a rat OTM model with an SMF. The OTM distance induced by an SMF was significantly decreased after injection of the IL-6 inhibitor tocilizumab. These results imply that SMF promotes osteoclastogenesis by inducing force-loaded PDLSCs to secrete the inflammatory cytokine IL-6, which accelerates OTM. This will help to reveal the mechanism of SMF accelerates tooth movement and should be evaluated for application in periodontitis patients.


Assuntos
Anticorpos Monoclonais Humanizados , Interleucina-6 , Campos Magnéticos , Osteogênese , Ligamento Periodontal , Células-Tronco , Técnicas de Movimentação Dentária , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Animais , Interleucina-6/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Ratos , Humanos , Osteoclastos/metabolismo , Masculino , Ratos Sprague-Dawley , Células Cultivadas , Remodelação Óssea
15.
Stem Cells Dev ; 33(9-10): 228-238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38534877

RESUMO

Periodontal tissue regeneration is important for preserving teeth. Periodontal ligament stem cells (PDLSCs) are useful in periodontal tissue regeneration; however, tooth extraction is required to obtain these cells. Therefore, we focused on induced pluripotent stem (iPS) cells and established a method to obtain PDLSC-like cells from iPS cells. Specifically, we first differentiated iPS cells into neural crest-like cells (iNCs). Next, we obtained PDLSC-like cells (iPDLSCs) by culturing iNCs on extracellular matrix (ECM) derived from human primary periodontal ligament cells (HPDLCs). This differentiation method suggested that ECM derived from HPDLCs is important for iPDLSC differentiation. Thus, we aimed to identify the PDLSC-inducing factor present in HPDLC-derived ECM in this study. We first performed comprehensive analyses of HPDLC genes and identified fibrillin-2 (FBN2), an ECM-related factor. Furthermore, to clarify the effect of FBN2 on iPDLSC differentiation, we cultured iNCs using ECM derived from HPDLCs with FBN2 knocked down. As a result, expression of PDL-related markers was reduced in iNCs cultured on ECM derived from HPDLCs transfected with FBN2 siRNA (iNC-siFBN2) compared with iPDLSCs. Furthermore, the expression of CD105 (a mesenchymal stem cell marker), proliferation ability, and multipotency of iNC-siFBN2 were lower compared with iPDLSCs. Next, we cultured iNCs on FBN2 recombinant protein; however, expression of PDL-related markers did not increase compared with iPDLSC. The present results suggest the critical involvement of FBN2 in inducing iPDLSCs from iNCs when in fact it does not promote iPDLSC differantiation. Therefore, we need to elucidate the entire HPDLC-ECMs, responsible for iPDLSCs induction.


Assuntos
Diferenciação Celular , Fibrilina-2 , Células-Tronco Pluripotentes Induzidas , Ligamento Periodontal , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia
16.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433534

RESUMO

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Cobalto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteogênese , Ligamento Periodontal , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cobalto/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Hipóxia Celular , Células-Tronco/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Perda do Osso Alveolar/metabolismo , Fosfoproteínas/metabolismo , Masculino , Coelhos , Regeneração Óssea/efeitos dos fármacos
17.
Arch Oral Biol ; 162: 105956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522213

RESUMO

OBJECTIVE: The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-ß1 with FGF-2 and TGF-ß3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN: This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-ß1&-ß3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-ß was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS: The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-ß3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION: The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-ß3 after FGF-2 was more effective than TGF-ß1.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Ligamento Periodontal , Células-Tronco , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta3 , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Humanos
18.
Exp Cell Res ; 437(1): 113999, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494067

RESUMO

The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.


Assuntos
Diabetes Mellitus , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ligamento Periodontal/metabolismo , Transdução de Sinais , Inflamação , Produtos Finais de Glicação Avançada/farmacologia
19.
Mol Cells ; 47(4): 100059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554844

RESUMO

Periodontitis (PD) is an inflammatory disease with alveolar bone destruction by osteoclasts (OCs). In PD, both inflammation and OC activation are significantly influenced by periodontal ligament fibroblasts (PDL-Fib). Yet, whether PDL-Fib has heterogeneity and whether distinct PDL-Fib subsets have specific functions have not been investigated. In this study, we discovered the complexity of PDL-Fib in PD, utilizing single-cell RNA sequencing data from human PD patients. We identified distinct subpopulations of PDL-Fib: one expressing interleukin-1 beta (IL-1ß) and another expressing the receptor activator of nuclear factor-kappa B ligand (RANKL), both crucial in OC differentiation and bone resorption. In periodontal tissues of mice with PD, active IL-1ß, cleaved caspase 1, and nucleotide-binding oligomerization domain-like receptor 3 (NLPR3) were significantly elevated, implicating the NLRP3 inflammasome in IL-1ß production. Upon stimulation of PDL-Fib with LPS from Porphyromonas gingivalis (pg), the most well-characterized periodontal bacteria, a more rapid increase in IL-1ß, followed by RANKL induction, was observed. IL-1ß and tumor necrosis factor alpha (TNF-α), another LPS-responsive cytokine, effectively increased RANKL in PDL-Fib, suggesting an indirect effect of pgLPS through IL-1ß and TNF-α on RANKL induction. Immunohistological analyses of mouse periodontal tissues also showed markedly elevated levels of IL-1ß and RANKL upon PD induction and displayed separate locations of IL-1ß-expressing PDL-Fib and RANKL-expressing PDL-Fib in PD. The heterogenic feature of fibroblasts expressing IL-1ß and RANKL was also mirrored in our combined cross-tissue single-cell RNA sequencing datasets analysis. In summary, our study elucidates the heterogeneity of PDL-Fib, highlighting distinct functional groups for producing RANKL and IL-1ß, which collectively promote OC generation and bone destruction in PD.


Assuntos
Fibroblastos , Interleucina-1beta , Ligamento Periodontal , Periodontite , Ligante RANK , Análise de Célula Única , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Periodontite/metabolismo , Periodontite/genética , Periodontite/patologia , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica , Osteoclastos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Análise da Expressão Gênica de Célula Única
20.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 37-45, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475949

RESUMO

OBJECTIVES: This study aimed to investigate the effects of sitagliptin on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in lipopolysaccharide (LPS)-induced inflammatory microenvironment and its molecular mechanism. METHODS: hPDLSCs were cultured in vitro and treated with different concentrations of sitagliptin to detect cell viability and subsequently determine the experimental concentration of sitagliptin. An hPDLSCs inflammation model was established after 24 h of stimulation with 1 µg/mL LPS and divided into blank, control, low-concentration sitagliptin (0.5 µmol/L), medium-concentration sitagliptin (1 µmol/L), and high-concentration sitagliptin (2 µmol/L), high-concentrationsitagliptin+stromal cell derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) pathway inhibitor (AMD3100) (2 µmol/L+10 µg/mL) groups. A cell-counting kit-8 was used to detect the proliferation activity of hPDLSCs after 24, 48, and 72 h culture. The apoptosis of hPDLSCs cultured for 72 h was detected by flow cytometry. After inducing osteogenic differentiation for 21 days, alizarin red staining was used to detect the osteogenic differentiation ability of hPDLSCs. The alkaline phosphatase (ALP) activity in hPDLSCs was determined using a kit. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6] in the supernatant of hPDLSCs culture were detected by enzyme-linked immunosorbent assay. The mRNA expressions of osteogenic differentiation genes [Runt-associated transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN)], SDF-1 and CXCR4 in hPDLSCs were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Western blot analysis was used to determine SDF-1 and CXCR4 protein expression in hPDLSCs. RESULTS: Compared with the blank group, the proliferative activity, number of mineralized nodules, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in the control group significantly decreased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 significantly increased (P<0.05). Compared with the control group, the proliferative activity, number of mineralized nodule, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in low-, medium-, and high-concentration sitagliptin groups increased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 decreased (P<0.05). AMD3100 partially reversed the effect of high-concentration sitagliptin on LPS-induced hPDLSCs (P<0.05). CONCLUSIONS: Sitagliptin may promote the proliferation and osteogenic differentiation of hPDLSCs in LPS-induced inflammatory microenvironment by activating the SDF-1/CXCR4 signaling pathway. Furthermore, it inhibited the apoptosis and inflammatory response of hPDLSCs.


Assuntos
Benzilaminas , Ciclamos , Lipopolissacarídeos , Ligamento Periodontal , Humanos , Ligamento Periodontal/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Osteogênese , Transdução de Sinais , Inflamação/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células , Células Estromais/metabolismo , Diferenciação Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA