Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.781
Filtrar
1.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744738

RESUMO

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Assuntos
Ligas , Helicobacter pylori , Nanopartículas Metálicas , Platina , Prata , Helicobacter pylori/efeitos da radiação , Helicobacter pylori/efeitos dos fármacos , Prata/química , Nanopartículas Metálicas/química , Platina/química , Ligas/química , Antibacterianos/farmacologia , Antibacterianos/química , Imunoensaio/métodos , Benzidinas/química , Ouro/química , Humanos , Esterilização/métodos , Limite de Detecção
2.
ACS Appl Mater Interfaces ; 16(19): 24274-24294, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699930

RESUMO

In the field of bone tissue engineering, recently developed Zn alloy scaffolds are considered potential candidates for biodegradable implants for bone regeneration and defect reconstruction. However, the clinical success of these alloys is limited due to their insufficient surface bioactivities. Further, the higher concentration of Zn2+ produced during degradation promotes antibacterial activity, but deteriorates osteogenic properties. This study fabricated an Azadirachta indica (neem)-assisted brushite-hydroxyapatite (HAp) coating on the recently developed Zn-2Cu-0.5Mg alloy to tackle the above dilemma. The microstructure, degradation behavior, antibacterial activity, and hemocompatibility, along with in vitro and in vivo cytocompatibility of the coated alloys, are systematically investigated. Microstructural analysis reveals flower-like morphology with uniformly grown flakes for neem-assisted deposition. The neem-assisted deposition significantly improves the adhesion strength from 12.7 to 18.8 MPa, enhancing the mechanical integrity. The potentiodynamic polarization study shows that the neem-assisted deposition decreases the degradation rate, with the lowest degradation rate of 0.027 mm/yr for the ZHN2 sample. In addition, the biomineralization process shows the apatite formation on the deposited coating after 21 days of immersion. In vitro cytotoxicity assay exhibits the maximum cell viability of 117% for neem-assisted coated alloy in 30% extract after 5d and the improved cytocompatibility which is due to the controlled release of Zn2+ ions. Meanwhile, neem-assisted coated alloy increases the ZOI by 32 and 24% for Gram-positive and Gram-negative bacteria, respectively. Acceptable hemolysis (<5%) and anticoagulation parameters demonstrate a promising hemocompatibility of the coated alloy. In vivo implantation illustrates a slight inflammatory response and vascularization after 2 weeks of subcutaneous implantation, and neo-bone formation in the defect areas of the rat femur. Micro-CT and histology studies demonstrate better osseointegration with satisfactory biosafety response for the neem-assisted coated alloy as compared to that without neem-assisted deposition. Hence, this neem-assisted brushite-Hap coating strategy elucidates a new perspective on the surface modification of biodegradable implants for the treatment of bone defects.


Assuntos
Ligas , Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis , Zinco , Ligas/química , Ligas/farmacologia , Zinco/química , Zinco/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Durapatita/química , Durapatita/farmacologia , Teste de Materiais , Camundongos , Química Verde , Implantes Absorvíveis
3.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700914

RESUMO

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Assuntos
Ligas , Materiais Revestidos Biocompatíveis , Teste de Materiais , Titânio , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ligas/química , Ligas/farmacologia , Titânio/química , Titânio/farmacologia , Humanos , Animais , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Linhagem Celular , Propriedades de Superfície , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Neovascularização Fisiológica/efeitos dos fármacos
4.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764432

RESUMO

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Assuntos
Ligas , Materiais Biocompatíveis , Sobrevivência Celular , Temperatura Alta , Teste de Materiais , Titânio , Titânio/química , Ligas/química , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Camundongos , Propriedades de Superfície
5.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773744

RESUMO

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Assuntos
Ligas , Durapatita , Teste de Materiais , Titânio , Zircônio , Zircônio/química , Durapatita/química , Ligas/química , Titânio/química , Entropia , Nióbio/química , Materiais Biocompatíveis/química
6.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
7.
PLoS One ; 19(5): e0302729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743667

RESUMO

The constitutive model and modulus parameter equivalence of shape memory alloy composites (SMAC) serve as the foundation for the structural dynamic modeling of composite materials, which has a direct impact on the dynamic characteristics and modeling accuracy of SMAC. This article proposes a homogenization method for SMA composites considering interfacial phases, models the interface stress transfer of three-phase cylinders physically, and derives the axial and shear stresses of SMA fiber phase, interfacial phase, and matrix phase mathematically. The homogenization method and stress expression were then used to determine the macroscopic effective modulus of SMAC as well as the stress characteristics of the fiber phase and interface phase of SMA. The findings demonstrate the significance of volume fraction and tensile pre-strain in stress transfer between the fiber phase and interface phase at high temperatures. The maximum axial stress in the fiber phase is 705.05 MPa when the SMA is fully austenitic and the pre-strain increases to 5%. At 10% volume fraction of SMA, the fiber phase's maximum axial stress can reach 1000 MPa. Ultimately, an experimental verification of the theoretical calculation method's accuracy for the effective modulus of SMAC lays the groundwork for the dynamic modeling of SMAC structures.


Assuntos
Ligas , Estresse Mecânico , Resistência à Tração , Ligas/química , Teste de Materiais/métodos , Módulo de Elasticidade , Materiais Inteligentes/química , Modelos Teóricos
8.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557764

RESUMO

This protocol describes the synthesis of Au nanoparticle seeds and the subsequent formation of Au-Sn bimetallic nanoparticles. These nanoparticles have potential applications in catalysis, optoelectronics, imaging, and drug delivery. Previously, methods for producing alloy nanoparticles have been time-consuming, require complex reaction conditions, and can have inconsistent results. The outlined protocol first describes the synthesis of approximately 13 nm Au nanoparticle seeds using the Turkevich method. The protocol next describes the reduction of Sn and its incorporation into the Au seeds to generate Au-Sn alloy nanoparticles. The optical and structural characterization of these nanoparticles is described. Optically, prominent localized surface plasmon resonances (LSPRs) are apparent using UV-visible spectroscopy. Structurally, powder X-ray diffraction (XRD) reflects all particles to be less than 20 nm and shows patterns for Au, Sn, and multiple Au-Sn intermetallic phases. Spherical morphology and size distribution are obtained from transmission electron microscopy (TEM) imaging. TEM reveals that after Sn incorporation, the nanoparticles grow to approximately 15 nm in diameter.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Prata/química , Ouro/química , Estanho , Nanopartículas Metálicas/química , Ligas/química
9.
ACS Appl Mater Interfaces ; 16(15): 18503-18521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570902

RESUMO

Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.


Assuntos
Osteogênese , Titânio , Corrosão , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Materiais Biocompatíveis , Ligas/química , Estresse Oxidativo , Propriedades de Superfície , Teste de Materiais
10.
J Mech Behav Biomed Mater ; 154: 106510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593720

RESUMO

Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys. In the present work, suitable literature data along SCC of Mg alloys has been analyzed to enable the development of a reliable SCC model for MgGd binary alloys. Pearson correlation coefficient and linear fitting are utilized to describe the contribution of selected parameters to corrosion and mechanical properties. Based on our data analysis, a parameter ranking is obtained, providing information on the SCC impact with regard to ultimate tensile strength (UTS) and fracture elongation of respective materials. According to the analyzed data, SCC susceptibility can be grouped and mapped onto Ashby type diagrams for UTS and elongation of respective base materials tested in air and in corrosive media. The analysis reveals the effect of secondary phase content as a crucial materials descriptor for our analyzed materials and enables better understanding towards SCC model development for Mg-5Gd alloy based implant.


Assuntos
Ligas , Cáusticos , Teste de Materiais , Ligas/química , Corrosão , Análise de Dados , Materiais Biocompatíveis/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124314, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669985

RESUMO

Cerium (Ce) are the most widely distributed rare earth element. However, humans exposed to Ce through inhalation have been reported to experience heat sensitivity, itching, and heightened taste and odour perception. The present study aims to develop an optical sensor device with a short response time and high selectivity for Ce amongst other ions in various environments. The potential applicability of a 6-hydroxy-5-((4-hydroxy-2-methylphenyl)diazenyl)pyrimidine-2,4(1H,3H)-dione (HHMDPD) assembled ligand as aceric ion (Ce4+)-selective caption optode was examined. After generating an ion pair with Tetra-n-octylammonium bromide (TOABr) and immobilizing on a tri-acetyl cellulose (TAC) membrane, the solubility of the HHMDPD ligand is improved. The constructed optode membrane reacts with Ce4+ by turning its orange colour to violet in Thiel buffer (pH of 5.5), which can be detected spectrophotometrically at λmax 667 nm. The measurement linearity was in the range of 0.70 - 18.7 × 10-6 mol/L of Ce4+ concentration with detection and quantification limits of 0.23 × 10-6 and 0.70 × 10-6 mol/L, respectively. Whatever the Ce4+ concentration in its real samples, the response time of the constructed device was 5.0 min. Additionally, it recorded repeatability and reproducibility with a %RSD of 1.37 and 2.55, respectively (n = 3). The proposed optode device exhibited complete reversibility, for multiple measurements, which could be easily achieved with the aid of a solution of HCl, 0.01 mol/L. The applicability of the proposed device has been effectively extended to analyze synthetic mixes corresponding to different Ce4+ real human, foods, water, and magnesium-based Ce4+ alloys.


Assuntos
Ligas , Cério , Humanos , Ligas/química , Cério/química , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Limite de Detecção , Dispositivos Ópticos , Água/química , Íons/análise
12.
J Mater Chem B ; 12(18): 4489-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38644661

RESUMO

Orthopedic device-related infection (ODRI) poses a significant threat to patients with titanium-based implants. The challenge lies in developing antibacterial surfaces that preserve the bulk mechanical properties of titanium implants while exhibiting characteristics similar to bone tissue. In response, we present a two-step approach: silver nanoparticle (AgNP) coating followed by selective laser-assisted surface alloying on commonly used titanium alumina vanadium (TiAl6V4) implant surfaces. This process imparts antibacterial properties without compromising the bulk mechanical characteristics of the titanium alloy. Systematic optimization of laser beam power (8-40 W) resulted in an optimized surface (32 W) with uniform TiAg alloy formation. This surface displayed a distinctive hierarchical mesoporous textured surface, featuring cauliflower-like nanostructures measuring between 5-10 nm uniformly covering spatial line periods of 25 µm while demonstrating homogenous elemental distribution of silver throughout the laser processed surface. The optimized laser processed surface exhibited prolonged superhydrophilicity (40 days) and antibacterial efficacy (12 days) against Staphylococcus aureus and Escherichia coli. Additionally, there was a significant twofold increase in bone mineralization compared to the pristine Ti6Al4V surface (p < 0.05). Rockwell hardness tests confirmed minimal (<1%) change in bulk mechanical properties compared to the pristine surface. This innovative laser-assisted approach, with its precisely tailored surface morphology, holds promise for providing enduring antibacterial and osteointegration properties, rendering it an optimal choice for modifying load-bearing implant devices without altering material bulk characteristics.


Assuntos
Ligas , Antibacterianos , Escherichia coli , Lasers , Próteses e Implantes , Prata , Staphylococcus aureus , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Animais , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Calcificação Fisiológica/efeitos dos fármacos
13.
Acta Biomater ; 180: 183-196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604465

RESUMO

The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Magnésio , Nanocompostos , Stents , Animais , Coelhos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Corrosão , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Incrustação Biológica/prevenção & controle , Dioxanos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Polímeros/farmacologia , Ligas/química , Ligas/farmacologia
14.
ACS Biomater Sci Eng ; 10(5): 3438-3453, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38564666

RESUMO

Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.


Assuntos
Implantes Absorvíveis , Cobre , Stents , Zinco , Zinco/química , Zinco/farmacologia , Cobre/química , Cobre/farmacologia , Ligas/química , Humanos , Titânio/química , Titânio/farmacologia , Alumínio/química , Alumínio/farmacologia , Teste de Materiais , Corrosão , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Nanocompostos/química
15.
ACS Biomater Sci Eng ; 10(5): 3454-3469, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38590081

RESUMO

Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.


Assuntos
Ligas , Osseointegração , Propriedades de Superfície , Alicerces Teciduais , Titânio , Titânio/química , Ligas/química , Osseointegração/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Módulo de Elasticidade , Teste de Materiais
16.
Colloids Surf B Biointerfaces ; 238: 113880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581836

RESUMO

In the field of orthopedics, it's crucial to effectively slow down the degradation rate of Mg alloys. This study aims to improve the degradation behavior of Mg-Zn-Ca alloys by electrodepositing fluorohydroxyapatite (FHA). We investigated the microstructure and bond strength of the deposition, as well as degradation and cellular reactions. After 15-30 days of degradation in Hanks solution, FHA deposited alloys showed enhanced stability and less pH change. The strong interfacial bond between FHA and the Mg-Zn-Ca substrate was verified through scratch tests (Critical loads: 10.73 ± 0.014 N in Mg-Zn-0.5Ca alloys). Cellular studies demonstrated that FHA-coated alloys exhibited good cytocompatibility and promoted the growth of MC3T3-E1 cells. Further tests showed FHA-coated alloys owed improved early bone mineralization and osteogenic properties, especially in Mg-Zn-0.5Ca. This research highlighted the potential of FHA-coated Mg-Zn-0.5Ca alloys in orthopedics applications.


Assuntos
Ligas , Cálcio , Magnésio , Zinco , Ligas/química , Ligas/farmacologia , Corrosão , Animais , Zinco/química , Zinco/farmacologia , Magnésio/química , Camundongos , Cálcio/química , Cálcio/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Hidroxiapatitas/química , Linhagem Celular , Durapatita/química , Durapatita/farmacologia
17.
ACS Biomater Sci Eng ; 10(5): 2935-2944, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38627890

RESUMO

Ti-Au intermetallic-based material systems are being extensively studied as next-generation thin film coatings to extend the lifetime of implant devices. These coatings are being developed for application to the articulating surfaces of total joint implants and, therefore, must have excellent biocompatibility combined with superior mechanical hardness and wear resistance. However, these key characteristics of Ti-Au coatings are heavily dependent upon factors such as the surface properties and temperature of the underlying substrate during thin film deposition. In this work, Ti3Au thin films were deposited by magnetron sputtering on both glass and Ti6Al4V substrates at an ambient and elevated substrate temperature of 275 °C. These films were studied for their mechanical properties by the nanoindentation technique in both variable load and fixed load mode using a Berkovich tip. XRD patterns and cross-sectional SEM images detail the microstructure, while AFM images present the surface morphologies of these Ti3Au thin films. The biocompatibility potential of the films is assessed by cytotoxicity tests in L929 mouse fibroblast cells using Alamar blue assay, while leached ion concentrations in the film extracts are quantified using ICPOEMS. The standard deviation for hardness of films deposited on glass substrates is ∼4 times lower than that on Ti6Al4V substrates and is correlated with a corresponding increase in surface roughness from 2 nm for glass to 40 nm for Ti6Al4V substrates. Elevating substrate temperature leads to an increase in film hardness from 5.1 to 8.9 GPa and is related to the development of a superhard ß phase of the Ti3Au intermetallic. The standard deviation of this peak mechanical hardness value is reduced by ∼3 times when measured in fixed load mode compared to the variable load mode due to the effect of nanoindentation tip penetration depth. All tested Ti-Au thin films also exhibit excellent biocompatibility against L929 fibroblast cells, as viability levels are above 95% and leached Ti, Al, V, and Au ion concentrations are below 0.1 ppm. Overall, this work demonstrates a novel Ti3Au thin film system with a unique combination of high hardness and excellent biocompatibility with potential to be developed into a new wear-resistant coating to extend the lifetime of articulating total joint implants.


Assuntos
Ligas , Vidro , Teste de Materiais , Propriedades de Superfície , Titânio , Titânio/química , Ligas/química , Animais , Camundongos , Vidro/química , Materiais Revestidos Biocompatíveis/química , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Materiais Biocompatíveis/química , Dureza , Ouro/química
18.
ACS Appl Bio Mater ; 7(5): 2762-2780, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38629138

RESUMO

In the present study, we have discussed the influence of forging temperature (623 K (FT623), 723 K (FT723) and 823 K (FT823)) on microstructure and texture evolution and its implication on mechanical behavior, in vitro-in vivo biocorrosion, antibacterial response, and cytocompatibility of microalloyed Mg-Zr-Sr-Ce alloy. Phase analysis, SEM, and TEM characterization confirm the presence of Mg12Ce precipitate, and its stability was further validated by performing ab initio molecular dynamic simulation study. FT723 exhibits strengthened basal texture, higher fraction of second phases, and particle-stimulated nucleation-assisted DRX grains compared to other two specimens, resulting in superior strength with comparable ductility. FT723 also exhibits superior corrosion resistance mainly due to the strengthened basal texture and lower dislocation density. All the specimens exhibit excellent antibacterial behavior with Gram-negative E. coli, Gram-positive Staphylococcus aureus, and Pseudomonas aeruginosa bacteria. 100% reduction of bacterial growth is observed within 24 h of culture of the specimens. Cytocompatibility was determined by challenging specimen extracts with the MC3T3-E1 cell lines. FT723 specimen exhibits the highest cell proliferation and alkaline phosphatase activity (ALP) because of its superior corrosion resistance. The ability of the specimens to be used in orthopedic implant application was evaluated by in vivo study in rabbit femur. Neither tissue-related infection nor the detrimental effect surrounding the implant was confirmed from histological analysis. Significant higher bone regeneration surrounding the FT723 specimen was observed in SEM analysis and fluorochrome labeling. After 60 days, the FT723 specimen exhibits the highest bone formation, suggesting it is a suitable candidate for orthopedic implant application.


Assuntos
Ligas , Antibacterianos , Materiais Biocompatíveis , Teste de Materiais , Osteogênese , Antibacterianos/farmacologia , Antibacterianos/química , Ligas/química , Ligas/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Zircônio/química , Zircônio/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Diferenciação Celular/efeitos dos fármacos , Coelhos , Magnésio/química , Magnésio/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estrôncio/química , Estrôncio/farmacologia , Simulação de Dinâmica Molecular , Linhagem Celular , Temperatura
19.
Anal Methods ; 16(16): 2496-2504, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38578053

RESUMO

This work describes an electrochemical sensor for the fast noninvasive detection of uric acid (UA) in saliva. The sensing material was based on a cobalt-containing Prussian blue analogue (Na2-xCo[Fe(CN)6]1-y, PCF). By optimizing the ratio of Co and Fe as 1.5 : 1 in PCF (PCF1.5,0), particles with a regular nanocubic morphology were formed. The calcination of PCF1.5,0 produced a carbon-coated CoFe alloy (CCF1.5), which possessed abundant defects and achieved an excellent electrochemical performance. Subsequently, CCF1.5 was modified on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical sensor, CCF1.5/SPCE, which showed a sensitive and selective response toward salivary UA owing to its good conductivity, sufficient surface active sites and efficient catalytic activity. The determination of UA in artificial saliva achieved the wide linear range of 40 nM-30 µM and the low limit of detection (LOD) of 15.3 nM (3σ/s of 3). The performances of the sensor including its reproducibility, stability and selectivity were estimated to be satisfactory. The content of UA in human saliva was determined and the recovery was in the range of 98-107% and the total RSD was 4.14%. The results confirmed the reliability of CCF1.5/SPCE for application in noninvasive detection.


Assuntos
Ligas , Carbono , Cobalto , Técnicas Eletroquímicas , Ferrocianetos , Ácido Úrico , Ácido Úrico/química , Ácido Úrico/análise , Ferrocianetos/química , Cobalto/química , Carbono/química , Humanos , Técnicas Eletroquímicas/métodos , Ligas/química , Ferro/química , Limite de Detecção , Nanopartículas Metálicas/química , Saliva/química , Reprodutibilidade dos Testes , Eletrodos
20.
J Environ Manage ; 358: 120847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626486

RESUMO

Platinum group metals (PGMs) are strategic metals. Auto-exhaust catalysts are their main application fields. The recovery of PGMs from spent auto-exhaust catalysts has remarkable economic value and strategic significance. Aiming at the problems of ferrosilicon generation for Fe capturing and subsequent oxygen blowing to remove iron with high energy consumption and heat release, a technology of Fe-Sn synergistic capturing PGMs was proposed. Taking full the advantage of the lower melting point of Fe-Sn alloy (<1200 °C) and its unique affinity for PGMs, the PGMs were captured at approximate 1400 °C with Fe-Sn as the collector. In experiment, 500 g of spent auto-exhaust catalysts were employed to minimize error and approximate industrial production. The mechanism of Fe-Sn synergistic capturing PGMs was elucidated. The generation of Fe-Sn-PGMs alloy lowered the activity of [PGMs] in the system, accelerated the reduction of the PGMs oxides and promoted the alloying of [PGMs]. Therefore, Fe-Sn synergistic capturing PGMs was realized. The inability of Si to enter the alloy phase was confirmed by theoretical calculations, avoiding the generation of ferrosilicon. The effects of basicity, CaF2, m(Fe)/m(Sn) and the amount of collector on capturing PGMs were optimized. Under the optimized conditions (basicity R = 1.1, spent auto-exhaust catalysts 70 wt%, CaO 30 wt%, B2O3 10 wt%, CaF2 7 wt%, m(Fe)/m(Sn) = 1/1 and the collector 15 wt%), the content of PGMs in the slag phase was 2.46 g/t. It is feasible to remove Fe and Sn by oxidation to achieve the purpose of PGMs enrichment. This technology offers guidance on the safe, environmentally sound, and efficient disposal of spent auto-exhaust catalysts, promoting the sustainable development of PGMs.


Assuntos
Ferro , Platina , Platina/química , Ferro/química , Catálise , Metais/química , Estanho/química , Ligas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA