Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.723
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724195

RESUMO

Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 µg NP/0.3 µg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.


Assuntos
Antígenos de Protozoários , Interferon gama , Ativação Linfocitária , Nanopartículas , Polissacarídeos , Toxoplasma , Toxoplasmose , Humanos , Nanopartículas/química , Polissacarídeos/imunologia , Toxoplasma/imunologia , Antígenos de Protozoários/imunologia , Toxoplasmose/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Feminino , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Pessoa de Meia-Idade
2.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724464

RESUMO

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Assuntos
Glioblastoma , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Terapia Viral Oncolítica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
4.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
5.
Mol Cancer ; 23(1): 83, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38730475

RESUMO

BACKGROUND: Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS: NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS: We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS: These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.


Assuntos
Nanopartículas , Linfócitos T , Humanos , Animais , Camundongos , Nanopartículas/química , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Evasão da Resposta Imune , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer ; 23(1): 98, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730483

RESUMO

The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais
7.
Proc Natl Acad Sci U S A ; 121(20): e2318773121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713628

RESUMO

The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.


Assuntos
Linfócitos T CD8-Positivos , Receptores Imunológicos , Transdução de Sinais , Receptores Imunológicos/metabolismo , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Diferenciação Celular , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
8.
Methods Cell Biol ; 186: 131-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705597

RESUMO

Hypomethylating therapies using decitabine or azacitidine are actively investigated to treat acute myeloid leukemia, myelodysplastic syndromes, as maintenance therapy after allogenic stem cell transplant and hemoglobinopathies. The therapeutic mechanism is to de-repress genes that have been turned off through oncogenesis or development via methylation. The therapy can be non-cytotoxic at low dosage, sparing healthy stem cells and operating on committed precursors. Because the methods of determining maximum tolerated dose are not well suited to this paradigm, and because the mechanism of action, which is depletion of DNA methylase 1 (DNMT1), is complex and dependent on passing through a cell cycle, a pharmacodynamic assay that measures DNMT1 can inform clinical trials aimed at establishing and improving therapy. Herein, we provide an assay that measures DNMT1 relative levels in circulating T cells of peripheral blood.


Assuntos
Azacitidina , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Decitabina , Azacitidina/farmacologia , Humanos , Decitabina/farmacologia , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo
9.
Front Immunol ; 15: 1293723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690263

RESUMO

T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.


Assuntos
Diferenciação Celular , Camundongos Knockout , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Linfocitária/imunologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Camundongos Endogâmicos C57BL
10.
Front Immunol ; 15: 1340702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690275

RESUMO

The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.


Assuntos
Matriz Extracelular , Neoplasias , Linfócitos T , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Comunicação Celular/imunologia , Imunoterapia/métodos
11.
Clin Lab ; 70(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747919

RESUMO

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


Assuntos
ADP-Ribosil Ciclase 1 , Antígenos CD28 , Citometria de Fluxo , Antígenos HLA-DR , Antígenos Comuns de Leucócito , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/imunologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/sangue , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Imunofenotipagem/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas de Membrana/imunologia
12.
Methods Mol Biol ; 2807: 61-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743221

RESUMO

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Assuntos
Membrana Celular , HIV-1 , Microscopia de Fluorescência , Imagem Individual de Molécula , Linfócitos T , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , Humanos , Membrana Celular/metabolismo , Membrana Celular/virologia , Imagem Individual de Molécula/métodos , Linfócitos T/virologia , Linfócitos T/metabolismo , Microscopia de Fluorescência/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Sci Rep ; 14(1): 10987, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745101

RESUMO

The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.


Assuntos
Regiões 3' não Traduzidas , Ativação Linfocitária , Poliadenilação , Humanos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Antígenos CD28/metabolismo , Antígenos CD28/genética , Linfócitos T/metabolismo , Linfócitos T/imunologia
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 289-295, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710512

RESUMO

Objective To evaluate the toxicology of targeting human epidermal growth factor receptor-2 chimeric antigen receptor T (HER2-CAR-T) cells and to provide a safety basis for the clinical evaluation of HER2-CAR-T cell therapy. Methods The recombinant lentiviral vector was used to generate HER2-CAR-T cells. Soft agar colony formation assay was used to observe the colony formation of HER2-CAR-T cells, and the colony formation rate was statistically analyzed. The HER2-CAR-T cell suspension was co-incubated with rabbit red blood cell suspension, and the hemolysis of red blood cells was evaluated by direct observation and microplate reader detection. The HER2-CAR-T cell preparation was injected into the ear vein of male New Zealand rabbits, and the stimulating effect of HER2-CAR-T cells on the blood vessels of the animals was observed by staining of tissue sections. The vesicular stomatitis virus envelope glycoprotein (VSV-G) gene of pMD 2.G vector was used as the target sequence, and the safety of the lentiviral vector was verified by real-time fluorescence quantitative PCR. The heart, liver, lung, and kidney of mice receiving HER2-CAR-T cell infusion were collected, and the lesions were observed by HE staining. Results The HER2-CAR-T cells were successfully prepared. These cells did not exhibit soft agar colony formation ability in vitro, and the HER2-CAR-T cell preparation did not cause hemolysis in New Zealand rabbit red blood cells. After the infusion of HER2-CAR-T cells into the ear vein of New Zealand rabbits, no obvious vascular stimulation response was found, and no specific amplification of VSV-G was detected. No obvious lesions were found in the heart, liver, lung and kidney tissues of the treatment group. Conclusion The prepared HER2-CAR-T cells have reliable safety.


Assuntos
Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Animais , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Coelhos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Masculino , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos/genética , Lentivirus/genética , Feminino
16.
Sci Adv ; 10(19): eadk1857, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718110

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos B7/metabolismo , Antígenos B7/imunologia , Antígenos CD28/metabolismo , Antígenos CD28/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Front Immunol ; 15: 1389018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720898

RESUMO

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/imunologia , Imunoterapia Adotiva/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
19.
Front Immunol ; 15: 1388962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720895

RESUMO

Introduction: Chronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells. Methods: Phytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels. Results: The tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity. Conclusion: Our results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.


Assuntos
Anti-Inflamatórios , Citocinas , Flores , Ativação Linfocitária , Matricaria , Extratos Vegetais , Linfócitos T , Humanos , Extratos Vegetais/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Matricaria/química , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Flores/química , Ativação Linfocitária/efeitos dos fármacos , Raízes de Plantas/química , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-38706074

RESUMO

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


Assuntos
Antígeno B7-H1 , Macrófagos , Mycobacterium tuberculosis , Proteína 2 Ligante de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Tuberculose , Humanos , Tuberculose/imunologia , Tuberculose/microbiologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Imunidade Inata , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Imunidade Adaptativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA