Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36442599

RESUMO

This study aimed to establish zebrafish-based in vivo and in silico assay systems to evaluate the antiandrogenic potential of environmental chemicals. Zebrafish embryos were exposed to 17α-methyltestosterone (TES) alone or coexposed to TES and representative antiandrogens including flutamide, p,p'-DDE, vinclozolin, fenitrothion, and linuron. We assessed the transcript expression of the androgen-responsive gene sulfotransferase family 2, cytosolic sulfotransferase 3 (sult2st3). The expression of sult2st3 was significantly induced by TES in the later stages of embryonic development. However, the TES-induced expression of sult2st3 was inhibited by flutamide in a concentration-dependent manner (IC50: 5.7 µM), suggesting that the androgen receptor (AR) plays a role in sult2st3 induction. Similarly, p,p'-DDE, vinclozolin, and linuron repressed the TES-induced expression of sult2st3 (IC50s: 0.35, 3.9, and 52 µM, respectively). At the highest concentration tested (100 µM), fenitrothion also suppressed sult2st3 expression almost completely. Notably, p,p'-DDE and linuron did not inhibit sult2st3 induction due to higher concentrations of TES; instead, they potentiated TES-induced sult2st3 expression. Fenitrothion and linuron, which had relatively low antiandrogenic potentials in terms of sult2st3 inhibition, induced broader toxicities in zebrafish embryos; thus, the relationship between developmental toxicities and antiandrogenic potency was unclear. Additionally, an in silico docking simulation showed that all five chemicals interact with the zebrafish AR at relatively low interaction energies and with Arg702 as a key amino acid in ligand binding. Our findings suggest that a combination of zebrafish-based in vivo and in silico assessments represents a promising tool to assess the antiandrogenic potentials of environmental chemicals.


Assuntos
Flutamida , Peixe-Zebra , Animais , Flutamida/toxicidade , Flutamida/metabolismo , Peixe-Zebra/metabolismo , Diclorodifenil Dicloroetileno/metabolismo , Diclorodifenil Dicloroetileno/farmacologia , Fenitrotion/metabolismo , Fenitrotion/farmacologia , Linurona/metabolismo
2.
J Appl Toxicol ; 42(11): 1787-1806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35698815

RESUMO

One of many noteworthy consequences of increasing societal reliance on pesticides is their predominance in aquatic environments. These pernicious chemicals interact with high temperatures from global climate change, heat waves, and natural variations to create unstable environments that negatively impact organisms' health. To understand these conditions, we examined the dose-dependent effects of environmentally relevant pesticide mixtures (metolachlor, linuron, isoproturon, tebuconazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) combined with elevated temperatures (22 control vs. 32°C for 4-week exposure) on renin, dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of reactive nitrogen species, RNS), superoxidase dismutase (SOD, an antioxidant), and catalase (CAT, an antioxidant) expressions in the kidneys of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to kidney tissues in high temperature and pesticide co-exposure groups, including rupture of the epithelial layer, hemorrhaging, and degeneration of tubular epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analyses demonstrated significant declines in renin receptor-like mRNA and protein expressions in kidney tissues under combined exposure to high temperature and pesticides compared with controls; conversely, expression of DNP, NTP, SOD, and CAT increased in kidney tissues under the same conditions. Apoptotic cells were also increased in co-exposure groups as assessed by in situ terminal deoxynucleotidyl transferase dUTP nick labeling (TUNEL) assay. The enhanced apoptosis in kidneys of heat and pesticides co-exposed fish was associated with increased caspase-3 (a protease enzyme) mRNA levels. Our results demonstrated that high temperature and pesticides induced oxidative/nitrative stress (i.e., ROS/RNS), damaged tissues, increased cellular apoptosis, and suppressed renin expression in kidneys of goldfish.


Assuntos
Atrazina , Praguicidas , Animais , Antioxidantes/metabolismo , Apoptose , Atrazina/metabolismo , Atrazina/farmacologia , Azinfos-Metil/metabolismo , Azinfos-Metil/farmacologia , Caspase 3/metabolismo , Catalase/metabolismo , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Carpa Dourada/metabolismo , Temperatura Alta , Rim , Linurona/metabolismo , Linurona/farmacologia , Estresse Oxidativo , Praguicidas/toxicidade , RNA Mensageiro/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Renina/metabolismo , Renina/farmacologia , Superóxido Dismutase/metabolismo , Temperatura
3.
Neurotoxicol Teratol ; 81: 106917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32712134

RESUMO

Due to run-off and rain events, agrochemicals can enter water catchments, exerting endocrine disruption effects and toxicity to aquatic organisms. Linuron is a phenylurea herbicide used to control a wide variety of vegetative weeds in agriculture in addition to residential applications. However, there are few studies that quantify its toxicity to early developmental stages of fish. The objectives of this study were to assess the acute toxicity of linuron to zebrafish embryos/larvae by measuring mortality, morphological deformities, oxidative respiration, gene expression, and locomotor activity via the Visual Motor Response test. Zebrafish embryos at ~6-h post-fertilization (hpf) were exposed to either embryo rearing medium (ERM), or one dose of 0.625, 1.25, 2.5, 5, and 10 µM linuron for up to 7 days post-fertilization (dpf) depending on the assay. Zebrafish larvae exposed to linuron displayed pericardial edema, yolk sac edema, and spinal curvature. Oxidative respiration assessments in embryos using the Agilent XFe24 Flux Analyzer revealed that linuron decreased mean basal respiration and oligomycin-induced ATP-linked respiration in 30 hpf embryos at 20 µM after a 24-hour exposure. In 7 dpf larvae, transcript abundance was determined for 6 transcripts that have a role in oxidative respiration (atp06, cox1, cox4-1, cox5a1, cytb, and nd1); the relative abundance of these transcripts was not altered with linuron treatment. A Visual Motor Response test was conducted on 7 dpf larvae to determine whether linuron (0.625 to 5 µM) impaired locomotor activity. Larval activity in the dark period decreased in a dose dependent manner and there were indications of hypoactivity as low as 1.25 µM. Transcript abundance was thus determined for tyrosine hydroxylase (th1) and glutamic acid decarboxylase 67 (gad1b), two rate limiting enzymes that control the production of dopamine and gamma-aminobutyric acid respectively. The mRNA levels of gad1b (p = 0.019) were reduced with increasing concentrations of linuron while th1 (p = 0.056) showed a similar decreasing trend, suggesting that neurotransmitter biosynthesis may be altered with exposure to linuron. This study improves knowledge related to the toxicity mechanisms for linuron and is the first to demonstrate that this anti-androgenic chemical impairs oxidative respiration and exerts neurotoxic effects associated with neurotransmitter biosynthesis during early development. These data are significant for environmental risk assessment of agrochemicals.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Herbicidas/farmacologia , Larva/efeitos dos fármacos , Linurona/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Embrião de Mamíferos/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Linurona/metabolismo , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento
4.
Genome Biol Evol ; 12(6): 827-841, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359160

RESUMO

Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20-839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.


Assuntos
Adaptação Biológica/genética , Comamonadaceae/genética , Herbicidas/metabolismo , Linurona/metabolismo , Plasmídeos , Comamonadaceae/metabolismo , Genoma Bacteriano , Filogenia
5.
Ecotoxicol Environ Saf ; 195: 110460, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199216

RESUMO

Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.


Assuntos
Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Agricultura , Biotransformação , Clorpirifos/metabolismo , Cocos , Linurona/metabolismo , Malation/metabolismo , Morfolinas/metabolismo , Praguicidas/toxicidade , Solo/química , Clima Tropical , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
6.
J Agric Food Chem ; 68(15): 4335-4345, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32207940

RESUMO

The phenylurea herbicide linuron is globally used and has caused considerable concern because it leads to environmental pollution. In this study, a highly efficient linuron-transforming strain Sphingobium sp. SMB was isolated, and a gene (lahB) responsible for the hydrolysis of linuron to 3,4-dichloroaniline and N,O-dimethylhydroxylamine was cloned from the genome of strain SMB. The lahB gene encodes an amidohydrolase, which shares 20-53% identity with other biochemically characterized amidohydrolases, except for the newly reported linuron hydrolase Phh (75%). The optimal conditions for the hydrolysis of linuron by LahB were determined to be pH 7.0 and 30 °C, and the Km value of LahB for linuron was 37.3 ± 1.2 µM. Although LahB and Phh shared relatively high identity, LahB exhibited a narrow substrate spectrum (specific for linuron) compared to Phh (active for linuron, diuron, chlortoluron, etc.). Sequence analysis and site-directed mutagenesis revealed that Ala261 of Phh was the key amino acid residue affecting the substrate specificity. Our study provides a new amidohydrolase for the specific hydrolysis of linuron.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linurona/metabolismo , Sphingomonadaceae/enzimologia , Amidoidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Estabilidade Enzimática , Herbicidas/metabolismo , Cinética , Filogenia , Alinhamento de Sequência , Sphingomonadaceae/química , Sphingomonadaceae/classificação , Sphingomonadaceae/genética , Especificidade por Substrato
7.
Environ Microbiol ; 20(11): 4091-4111, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30207068

RESUMO

IS1071, an insertion element that primarily flanks organic xenobiotic degradation genes in cultured isolates, is suggested to play a key role in the formation and distribution of bacterial catabolic pathway gene clusters. However, in environmental settings, the identity of the IS1071 genetic cargo and its correspondence to the local selective conditions remain unknown. To respond, we developed a long-range PCR approach amplifying accessory genes between two IS1071 copies from community DNA followed by amplicon sequencing. We applied this method to pesticide-exposed environments, i.e. linuron-treated agricultural soil and on-farm biopurification systems (BPS) treating complex agricultural wastewater, as to non-treated controls. Amplicons were mainly recovered from the pesticide-exposed environments and the BPS matrix showed a higher size diversity compared to the agricultural soil. Retrieved gene functions mirrored the main selection pressure as (i) a large fraction of the BPS amplicons contained a high variety of genes/gene clusters related to the degradation of organics including herbicides present in the wastewater and (ii) in the agricultural soil, recovered genes were associated with linuron degradation. Our metagenomic analysis extends observations from cultured isolates and provides evidence that IS1071 is a carrier of catabolic genes in xenobiotica stressed environments and contributes to community level adaptation towards pesticide biodegradation.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Elementos de DNA Transponíveis , Praguicidas/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , DNA Bacteriano/genética , Ecologia , Herbicidas/metabolismo , Linurona/metabolismo , Metagenômica , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia
8.
Environ Pollut ; 238: 281-290, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29573710

RESUMO

The phenylurea herbicide, linuron (LIN), is used to control various types of weeds. Despite its efficient role in controlling weeds, it presents a persistent problem to the environment. In the current study, phytoremediation properties of transgenic CYP1A2 Arabidopsis thaliana plants to LIN were assessed. CYP1A2 gene was firstly cloned and expressed in bacteria before proceeding to plants. In presence of LIN, The growth of CYP1A2 expressing bacteria was superior compared to control bacteria transformed with the empty bacterial expression vector pET22b(+). No clear morphological changes were detected on CYP1A2 transgenic plants. However, significant resistance to LIN herbicide application either via spraying the foliar parts of the plant or via supplementation of the herbicide in the growth medium was observed for CYP1A2 transformants. Plant growth assays under LIN stress provide strong evidence for the enhanced capacity of transgenic lines to grow and to tolerate high concentrations of LIN compared to control plants. HPLC analyses showed that detoxification of LIN by bacterial extracts and/or transgenic plant leaves is improved as compared to the corresponding controls. Our data indicate that over expression of the human CYP1A2 gene increases the phytoremediation capacity and tolerance of Arabidopsis thaliana plants to the phenylurea herbicide linuron.


Assuntos
Arabidopsis/fisiologia , Citocromo P-450 CYP1A2/genética , Escherichia coli/fisiologia , Linurona/toxicidade , Arabidopsis/metabolismo , Biodegradação Ambiental , Citocromo P-450 CYP1A2/metabolismo , Tolerância a Medicamentos , Escherichia coli/metabolismo , Herbicidas/metabolismo , Humanos , Inativação Metabólica , Linurona/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
9.
Microbiologyopen ; 7(2): e00559, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314727

RESUMO

The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7, and Hyphomicrobium sulfonivorans WDL6 compose a triple-species consortium that synergistically degrades and grows on the phenylurea herbicide linuron. To acquire a better insight into the interactions between the consortium members and the underlying molecular mechanisms, we compared the transcriptomes of the key biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or consortium conditions by differential RNAseq analysis. Differentially expressed pathways and cellular systems were inferred using the network-based algorithm PheNetic. Coculturing affected mainly metabolism in WDL1. Significantly enhanced expression of hylA encoding linuron hydrolase was observed. Moreover, differential expression of several pathways involved in carbohydrate, amino acid, nitrogen, and sulfur metabolism was observed indicating that WDL1 gains carbon and energy from linuron indirectly by consuming excretion products from WDL7 and/or WDL6. Moreover, in consortium conditions, WDL1 showed a pronounced stress response and overexpression of cell to cell interaction systems such as quorum sensing, contact-dependent inhibition, and Type VI secretion. Since the latter two systems can mediate interference competition, it prompts the question if synergistic linuron degradation is the result of true adaptive cooperation or rather a facultative interaction between bacteria that coincidentally occupy complementary metabolic niches.


Assuntos
Compostos de Anilina/metabolismo , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Hyphomicrobium/metabolismo , Linurona/metabolismo , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Comamonadaceae/genética , Regulação Bacteriana da Expressão Gênica/genética , Hidrolases/genética , Hyphomicrobium/genética , Transcriptoma/genética , Sistemas de Secreção Tipo VI/genética
10.
Environ Microbiol ; 20(1): 85-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124862

RESUMO

Variovorax sp. WDL1 mediates hydrolysis of the herbicide linuron into 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine in a tripartite bacterial consortium with Comamonas testosteroni WDL7 and Hyphomicrobium sulfonivorans WDL6. Although strain WDL1 contains the dcaQTA1A2B operon for DCA oxidation, this conversion is mainly performed by WDL7. Phenotypic diversification observed in WDL1 cultures and scrutiny of the WDL1 genome suggest that WDL1 cultures consist of two dedicated subpopulations, i.e., a linuron-hydrolysing subpopulation (Lin + DCA-) and a DCA-oxidizing subpopulation (Lin-DCA+). Whole genome analysis of strains representing the respective subpopulations revealed that they are identical, aside from the presence of hylA (in Lin + DCA- cells) and the dcaQTA1A2B gene cluster (in Lin-DCA+ cells), and that these catabolic gene modules replace each other at exactly the same locus on a 1380 kb extra-chromosomal element that shows plasmid gene functions including genes for transferability by conjugation. Both subpopulations proliferate in consortium biofilms fed with linuron, but Lin + DCA- cells compose the main WDL1 subpopulation. Our observations instigated revisiting the interactions within the consortium and suggest that the physical separation of two essential linuron catabolic gene clusters in WDL1 by mutually exclusive integration in the same mobile genetic element is key to the existence of WDL1 in a consortium mode.


Assuntos
Biodegradação Ambiental , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Hyphomicrobium/metabolismo , Linurona/metabolismo , Biofilmes , Comamonadaceae/classificação , Comamonadaceae/genética , Genoma Bacteriano/genética , Hyphomicrobium/classificação , Hyphomicrobium/genética , Sequências Repetitivas Dispersas/genética , Família Multigênica/genética , Sequenciamento Completo do Genoma
11.
Chemosphere ; 181: 666-674, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28476006

RESUMO

General population exposure to pesticides mainly occurs via food and water consumption. However, their risk assessment for regulatory purposes does not currently consider the actual co-exposure to multiple substances. To address this concern, relevant experimental studies are needed to fill the lack of data concerning effects of mixture on human health. For the first time, the present work evaluated on human microsomes and liver cells the combined metabolic effects of, chlorfenvinphos, ethion and linuron, three pesticides usually found in vegetables of the European Union. Concentrations of these substances were measured during combined incubation experiments, thanks to a new analytical methodology previously developed. The collected data allowed for calculation and comparison of the intrinsic hepatic clearance of each pesticide from different combinations. Finally, the results showed clear inhibitory effects, depending on the association of the chemicals at stake. The major metabolic inhibitor observed was chlorfenvinphos. During co-incubation, it was able to decrease the intrinsic clearance of both linuron and ethion. These latter also showed a potential for metabolic inhibition mainly cytochrome P450-mediated in all cases. Here we demonstrated that human detoxification from a pesticide may be severely hampered in case of co-occurrence of other pesticides, as it is the case for drugs interactions, thus increasing the risk of adverse health effects. These results could contribute to improve the current challenging risk assessment of human and animal dietary to environmental chemical mixtures.


Assuntos
Inativação Metabólica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Praguicidas/metabolismo , Animais , Clorfenvinfos/metabolismo , Clorfenvinfos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Linurona/metabolismo , Linurona/farmacologia , Fígado/citologia , Fígado/fisiologia , Taxa de Depuração Metabólica/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Compostos Organotiofosforados/metabolismo , Compostos Organotiofosforados/farmacologia , Praguicidas/química , Praguicidas/farmacologia
12.
Appl Microbiol Biotechnol ; 101(11): 4815-4825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235988

RESUMO

On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.


Assuntos
Linurona/metabolismo , Consórcios Microbianos/genética , Praguicidas/metabolismo , Microbiologia do Solo , Agricultura , Biodegradação Ambiental , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/genética , DNA Bacteriano , Eletroforese em Gel de Gradiente Desnaturante , Hidrólise , Sequências Repetitivas Dispersas , Linurona/farmacologia , Consórcios Microbianos/efeitos dos fármacos , Plasmídeos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Águas Residuárias
13.
Appl Environ Microbiol ; 82(9): 2843-2853, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26944844

RESUMO

UNLABELLED: The abundance of libA, encoding a hydrolase that initiates linuron degradation in the linuron-metabolizing Variovorax sp. strain SRS16, was previously found to correlate well with linuron mineralization, but not in all tested environments. Recently, an alternative linuron hydrolase, HylA, was identified in Variovorax sp. strain WDL1, a strain that initiates linuron degradation in a linuron-mineralizing commensal bacterial consortium. The discovery of alternative linuron hydrolases poses questions about the respective contribution and competitive character of hylA- and libA-carrying bacteria as well as the role of linuron-mineralizing consortia versus single strains in linuron-exposed settings. Therefore, dynamics of hylA as well as dcaQ as a marker for downstream catabolic functions involved in linuron mineralization, in response to linuron treatment in agricultural soil and on-farm biopurification systems (BPS), were compared with previously reported libA dynamics. The results suggest that (i) organisms containing either libA or hylA contribute simultaneously to linuron biodegradation in the same environment, albeit to various extents, (ii) environmental linuron mineralization depends on multispecies bacterial food webs, and (iii) initiation of linuron mineralization can be governed by currently unidentified enzymes. IMPORTANCE: A limited set of different isofunctional catabolic gene functions is known for the bacterial degradation of the phenylurea herbicide linuron, but the role of this redundancy in linuron degradation in environmental settings is not known. In this study, the simultaneous involvement of bacteria carrying one of two isofunctional linuron hydrolysis genes in the degradation of linuron was shown in agricultural soil and on-farm biopurification systems, as was the involvement of other bacterial populations that mineralize the downstream metabolites of linuron hydrolysis. This study illustrates the importance of the synergistic metabolism of pesticides in environmental settings.


Assuntos
Agricultura , Bactérias/metabolismo , Linurona/metabolismo , Microbiologia do Solo , Purificação da Água/instrumentação , Bactérias/enzimologia , Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/genética , Microbiologia Ambiental , Cadeia Alimentar , Genes Bacterianos , Herbicidas/metabolismo , Consórcios Microbianos , Praguicidas/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Solo/química
14.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26705572

RESUMO

On-farm biopurification systems (BPSs) treat pesticide-contaminated wastewater at farms through biodegradation and sorption processes. However, information on the microbiota involved in pesticide removal in BPSs is scarce. Here we report on the response of BPS bacterial communities to the herbicide linuron (BPS(+)) compared with the control (BPS(-)) in a microcosm experiment. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of 16S rRNA gene fragments amplified from community DNA indicated shifts in the bacterial community after linuron application. Responding populations belonged to taxa that were previously reported from linuron degrading consortia cultivated from soil (Hyphomicrobiaceae, Comamonadaceae, Micrococcaceae). In addition, numerous taxa with increased relative abundance were identified that were previously not associated with linuron degradation. The relative abundance of IncP-1 korB copies increased in response to linuron application. Amplicon pyrosequencing of IncP-1 trfA genes revealed a high IncP-1 plasmid diversity and suggested that populations carrying IncP-1ß plasmids increased in relative abundance. Transferable mercury resistance plasmids were exogenously captured from BPS(+)/BPS(-), and in three transconjugants from BPS(+) the gene hylA was detected. Our data suggest the existence of a multispecies linuron degrading bacterial food web and an involvement of IncP-1 plasmids in the adaptation of bacterial communities to pesticide pollution in BPSs.


Assuntos
Comamonadaceae/genética , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Linurona/metabolismo , Linurona/farmacologia , Biodegradação Ambiental , Comamonadaceae/efeitos dos fármacos , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Plasmídeos/genética , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Águas Residuárias/microbiologia
15.
Environ Sci Technol ; 48(20): 12344-53, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251785

RESUMO

Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here, we explore bioaccumulation in sediment-rooted macrophytes by tracking and modeling chemical flows of chlorpyrifos, linuron, and six PCBs in water-sediment-macrophyte systems. Chemical fluxes across the interfaces between pore water, overlying water, shoots, and roots were modeled using a novel multicompartment model. The modeling yielded the first mass-transfer parameter set reported for bioaccumulation by sediment-rooted macrophytes, with satisfactory narrow confidence limits for more than half of the estimated parameters. Exposure via the water column led to rapid uptake by Elodea canadensis and Myriophyllum spicatum shoots, followed by transport to the roots within 1-3 days, after which tissue concentrations gradually declined. Translocation played an important role in the exchange between shoots and roots. Exposure via spiked sediment led to gradual uptake by the roots, but subsequent transport to the shoots and overlying water remained limited for the chemicals studied. These contrasting patterns show that exposure is sensitive to test set up, chemical properties, and species traits. Although field-concentrations in water and sediment will differ from those in the tests, the model parameters can be assumed applicable for modeling exposure to macrophytes in the field.


Assuntos
Clorpirifos/metabolismo , Hydrocharitaceae/metabolismo , Linurona/metabolismo , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Clorpirifos/análise , Sedimentos Geológicos/análise , Linurona/análise , Magnoliopsida , Modelos Teóricos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Bifenilos Policlorados/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
16.
J Environ Manage ; 143: 106-12, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24905640

RESUMO

Strategies for remediation of polluted soils are needed to accelerate the degradation and natural attenuation of pesticides. This study was conducted to assess the effect of solarization (S) and biosolarization (BS) during the summer season using organic wastes (composted sheep manure and sugar beet vinasse) for the bioremediation of soil containing residues of terbuthylazine and linuron. The results showed that both S and BS enhanced herbicide dissipation rates compared with the non-disinfected control, an effect which was attributed to the increased soil temperature and organic matter. Linuron showed similar behavior under S and BS conditions. However, terbuthylazine was degraded to a greater extent in the biosolarization experiment using sugar beet vinasse than in the both the solarization and biosolarization experiments using composted sheep manure treatments. The main organic intermediates detected during the degradation of terbuthylazine and linuron were identified, enabling the main steps of degradation to be proposed. The results confirm that both S and BS techniques can be considered as a remediation tools for polluted soils containing these herbicides.


Assuntos
Biodegradação Ambiental , Linurona , Resíduos de Praguicidas , Poluentes do Solo , Triazinas , Animais , Poluição Ambiental , Herbicidas/metabolismo , Linurona/metabolismo , Esterco , Resíduos de Praguicidas/análise , Ovinos , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Luz Solar , Temperatura , Triazinas/metabolismo
17.
FEMS Microbiol Ecol ; 88(1): 184-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24410802

RESUMO

Bacterial multispecies biofilms are catalysts for pollutant degradation in aqueous ecosystems. Their activity in systems where xenobiotics occur as micropollutants (µg L(-1) level) and natural dissolved organic matter provides carbon and energy instead remains uncharacterized. Biofilm formation of a bacterial consortium consisting of the linuron-degrading Variovorax sp. WDL1 and metabolite-degrading strains Comamonas sp. WDL7 and Hyphomicrobium sp. WDL6 at micropollutant linuron concentrations and the impact of auxiliary carbon sources on degradation and biofilm composition were investigated. Biofilms formed at concentrations of 1000, 100, and 10 µg L(-1) linuron. The highest biomass, organized in mixed-species mounds, was observed at 1000 µg L(-1) linuron, while at 100 and 10 µg L(-1) , thin layers of cells occurred. Linuron removal efficiencies decreased from c. 85% when fed with 100 and 1000 µg L(-1) linuron to 30% in case of 10 µg L(-1) linuron due to reduced specific activity. Biofilms grown on 10 µg L(-1) linuron were subsequently fed with easily and less degradable carbon sources in addition to 10 µg L(-1) linuron. Although co-feeding with more degradable C-sources increased biofilm biomass, linuron removal remained 30%. Calculations based on biofilm volume measurements pointed toward reduced specific activity, compensated by a higher biomass. Uncertainties about biofilm heterogeneity and cell volume can undo this explanation.


Assuntos
Biofilmes , Comamonadaceae/fisiologia , Poluentes Ambientais/metabolismo , Hyphomicrobium/fisiologia , Linurona/metabolismo , Consórcios Microbianos , Praguicidas/metabolismo , Biodegradação Ambiental , Biomassa , Carbono/metabolismo , Comamonadaceae/crescimento & desenvolvimento , Hyphomicrobium/crescimento & desenvolvimento
18.
Appl Microbiol Biotechnol ; 98(2): 931-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23653124

RESUMO

Effects of environmental dissolved organic matter (eDOM) that consists of various low concentration carbonic compounds on pollutant biodegradation by bacteria are poorly understood, especially when it concerns synergistic xenobiotic-degrading consortia where degradation depends on interspecies metabolic interactions. This study examines the impact of the quality and quantity of eDOM, supplied as secondary C-source, on the structure, composition and pesticide-degrading activity of a triple-species bacterial consortium in which the members synergistically degrade the phenylurea herbicide linuron, when grown as biofilms. Biofilms developing on 10 mg L⁻¹ linuron showed a steady-state linuron degradation efficiency of approximately 85 %. The three bacterial strains co-localized in the biofilms indicating syntrophic interactions. Subsequent feeding with eDOM or citrate in addition to linuron resulted into changes in linuron-degrading activity. A decrease in linuron-degrading activity was especially recorded in case of co-feeding with citrate and eDOM of high quality and was always associated with accumulation of the primary metabolite 3,4-dichloroaniline. Improvement of linuron degradation was especially observed with more recalcitrant eDOM. Addition of eDOM/citrate formulations altered biofilm architecture and species composition but without loss of any of the strains and of co-localization. Compositional shifts correlated with linuron degradation efficiencies. When the feed was restored to only linuron, the linuron-degrading activity rapidly changed to the level before the mixed-substrate feed. Meanwhile only minor changes in biofilm composition and structure were recorded, indicating that observed eDOM/citrate effects had been primarily due to repression/stimulation of linuron catabolic activity rather than to biofilm characteristics.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Poluentes Ambientais/metabolismo , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/fisiologia , Compostos Orgânicos/metabolismo , Praguicidas/metabolismo , Compostos de Anilina/metabolismo , Biotransformação , Carbono/metabolismo , Linurona/metabolismo
19.
Environ Sci Pollut Res Int ; 21(4): 2654-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122163

RESUMO

Sorption and biodegradation are the main mechanisms for the removal of endocrine disruptor compounds (EDs) from both solid and liquid matrices. There are recent evidences about the capacity of white-rot fungi to decontaminate water systems from phenolic EDs by means of their ligninolytic enzymes. Most of the available studies report the removal of EDs by biodegradation or adsorption separately. This study assessed the simultaneous removal of five EDs­the xenoestrogens bisphenol A (BPA), ethynilestradiol (EE2), and 4-n-nonylphenol (NP), and the herbicide linuron and the insecticide dimethoate­from a municipal landfill leachate (MLL) using a combined sorption/bioremoval approach. The adsorption matrices used were potato dextrose agar alone or added with each of the following adsorbent materials: ground almond shells, a coffee compost, a coconut fiber, and a river sediment. These matrices were either not inoculated or inoculated with the fungus Pleurotus ostreatus and superimposed on the MLL. The residual amount of each ED in the MLL was quantified after 4, 7, 12, and 20 days by HPLC analysis and UV detection. Preliminary experiments showed that (1) all EDs did not degrade significantly in the untreatedMLL for at least 28 days, (2) the mycelial growth of P. ostreatus was largely stimulated by components of the MLL, and (3) the enrichment of potato dextrose agar with any adsorbent material favored the fungal growth for 8 days after inoculation. A prompt relevant disappearance of EDs in the MLL occurred both without and, especially, with fungal activity, with the only exception of the very water soluble dimethoate that was poorly adsorbed and possibly degraded only during the first few days of experiments. An almost complete removal of phenolic EDs, especially EE2 and NP, occurred after 20 days or much earlier and was generally enhanced by the adsorbent materials used. Data obtained indicated that both adsorption and biodegradation mechanisms contribute significantly to MLL decontamination from the EDs studied and that the efficacy of the methodology adopted is directly related to the hydrophobicity of the contaminant.


Assuntos
Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Pleurotus/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Adsorção , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Biodegradação Ambiental , Cocos , Descontaminação , Dimetoato/química , Dimetoato/metabolismo , Etinilestradiol/química , Etinilestradiol/metabolismo , Sedimentos Geológicos/química , Linurona/química , Linurona/metabolismo , Fenóis/química , Fenóis/metabolismo , Prunus , Instalações de Eliminação de Resíduos
20.
Appl Environ Microbiol ; 79(17): 5258-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23811502

RESUMO

Variovorax sp. strain WDL1, which mineralizes the phenylurea herbicide linuron, expresses a novel linuron-hydrolyzing enzyme, HylA, that converts linuron to 3,4-dichloroaniline (DCA). The enzyme is distinct from the linuron hydrolase LibA enzyme recently identified in other linuron-mineralizing Variovorax strains and from phenylurea-hydrolyzing enzymes (PuhA, PuhB) found in Gram-positive bacteria. The dimeric enzyme belongs to a separate family of hydrolases and differs in Km, temperature optimum, and phenylurea herbicide substrate range. Within the metal-dependent amidohydrolase superfamily, HylA and PuhA/PuhB belong to two distinct protein families, while LibA is a member of the unrelated amidase signature family. The hylA gene was identified in a draft genome sequence of strain WDL1. The involvement of hylA in linuron degradation by strain WDL1 is inferred from its absence in spontaneous WDL1 mutants defective in linuron hydrolysis and its presence in linuron-degrading Variovorax strains that lack libA. In strain WDL1, the hylA gene is combined with catabolic gene modules encoding the downstream pathways for DCA degradation, which are very similar to those present in Variovorax sp. SRS16, which contains libA. Our results show that the expansion of a DCA catabolic pathway toward linuron degradation in Variovorax can involve different but isofunctional linuron hydrolysis genes encoding proteins that belong to evolutionary unrelated hydrolase families. This may be explained by divergent evolution and the independent acquisition of the corresponding genetic modules.


Assuntos
Comamonadaceae/enzimologia , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Hidrolases/metabolismo , Linurona/metabolismo , Compostos de Anilina/metabolismo , Biotransformação , Comamonadaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Dados de Sequência Molecular , Multimerização Proteica , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA