Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Anal Chem ; 93(48): 15832-15839, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807566

RESUMO

The variable modification of the outer membrane lipopolysaccharide (LPS) in Gram-negative bacteria contributes to bacterial pathogenesis through various mechanisms, including the development of antibiotic resistance and evasion of the immune response of the host. Characterizing the natural structural repertoire of LPS is challenging due to the high heterogeneity, branched architecture, and strong amphipathic character of these glycolipids. To address this problem, we have developed a method enabling the separation and structural profiling of complex intact LPS mixtures by using nanoflow reversed-phase high-performance liquid chromatography (nLC) coupled to electrospray ionization Fourier transform mass spectrometry (ESI-FT-MSn). Nanogram quantities of rough-type LPS mixtures from Neisseria meningitidis could be separated and analyzed by nLC-ESI-FT-MS. Furthermore, the method enabled the analysis of highly heterogeneous smooth (S)-type LPS from pathogenic enteric bacteria such as Salmonella enterica serotype Typhimurium and Escherichia coli serotype O111:B4. High-resolution, accurate mass spectra of intact LPS containing various lengths of the O-specific polysaccharide in the range of 3 and 15 kDa were obtained. In addition, MS/MS experiments with collision-induced dissociation of intact LPS provided detailed information on the composition of oligo/polysaccharides and lipid A domains of single S-type LPS species. The structural heterogeneity of S-type LPS was characterized by unprecedented details. Our results demonstrate that nLC-ESI-FT-MSn is an attractive strategy for the structural profiling of small quantities of complex bacterial LPS mixtures in their intact form.


Assuntos
Lipopolissacarídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Lipídeo A/análise , Lipopolissacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray
2.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681907

RESUMO

Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a ß-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/análise , Lipopolissacarídeos/química , Sequência de Carboidratos , Liberibacter/metabolismo , Lipídeo A/química , Peso Molecular
3.
Methods Mol Biol ; 2306: 275-283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954953

RESUMO

Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.


Assuntos
Bactérias/química , Lipídeo A/análise , Lipidômica/métodos , Hidrólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de Trabalho
4.
Anal Chem ; 93(9): 4255-4262, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33625828

RESUMO

Lipopolysaccharides (LPS) constitute the outermost layer of Gram-negative bacteria and consequently play an important role in bacterial infections. In order to address public health issues posed by Gram-negative bacteria, it is necessary to elucidate the structure of the molecular actors at the forefront of infections. LPS virulence and toxicity are partially modulated by lipid A, a hydrophobic saccharolipid that anchors LPS to the bacterial outer membrane. Understanding the lipid A structure is inherently intertwined with understanding its role as an endotoxin. Accordingly, several successful strategies incorporating tandem mass spectrometry have been applied toward the structural analysis of lipid A. Herein, a shotgun HCD strategy was applied toward the characterization of the lipid A profile of Pseudomonas aeruginosa PAO1. This analysis was enhanced by the development of an LC-MS/MS approach to eliminate isomeric signals in the MS/MS spectra that confounded characterization. Importantly, combining reverse phase chromatography with HCD and ultraviolet photodissociation analyses of the lipid A profile revealed the presence of previously unreported lipid A acyl chain positional isomers. Altogether, these strategies provide the most in-depth structural and molecular characterization of PAO1 lipid A to date.


Assuntos
Lipídeo A , Espectrometria de Massas em Tandem , Cromatografia Líquida , Isomerismo , Lipídeo A/análise , Pseudomonas aeruginosa
5.
Anal Chem ; 92(20): 13667-13671, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32902263

RESUMO

We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host-pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host-pathogen MSI studies, proved elusive. Here, we detected LPS-derived lipid A from the Gram-negative pathogens, Escherichia coli (Ec, m/z 1797) and Pseudomonas aeruginosa (Pa, m/z 1446) using on-tissue acid hydrolysis to cleave the glycosidic linkage between the polysaccharide (core and O-antigen) and lipid A moieties of LPS. Using accurate mass methods, the ion corresponding to the major Ec and Pa lipid A species (m/z 1797 and 1446, respectively) were unambiguously discriminated from complex tissue substrates. Further, we evaluated potential delocalization and signal loss of other tissue lipids and found no evidence for either, making this LPS-to-Lipid A-MSI (LLA-MSI) method, compatible with simultaneous host-pathogen lipid imaging following acid hydrolysis. This spatially sensitive technique is the first step in mapping host-influenced de novo lipid A modifications, such as those associated with antimicrobial resistance phenotypes, during Gram-negative bacterial infection and will advance our understanding of the host-pathogen interface.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/metabolismo , Animais , Escherichia coli/metabolismo , Rim/microbiologia , Limite de Detecção , Camundongos , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Lipid Res ; 61(11): 1437-1449, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839198

RESUMO

Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.


Assuntos
Lipídeo A/análise , Neisseria meningitidis/química , Configuração de Carboidratos , Lipídeo A/metabolismo , Neisseria meningitidis/metabolismo , Fosforilação , Espectrometria de Massas em Tandem
7.
Rapid Commun Mass Spectrom ; 34(21): e8897, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673427

RESUMO

RATIONALE: Lipid A is a part of the lipopolysaccharide layer, which is a main component of the outer membrane from Gram-negative bacteria. It can be sensed by mammalians to identify the presence of Gram-negative bacteria in their tissues and plays a key role in the pathogenesis of bacterial infections. Lipid A is also used as an adjuvant in human vaccines, emphasizing the importance of its structural analysis. METHODS: In order to distinguish and characterize various lipid A species, a liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) method was developed. Isolation of lipid A from different bacteria was carried out using a modified Bligh and Dyer extraction following a mild acid hydrolysis. Chromatography was performed using a bifunctional reversed-phase-based stationary phase. High-resolution MS using negative electrospray ionization was applied and MS/MS experiments utilizing high-energy collisional dissociation generated diagnostic product ions, which allowed the assignment of the side chains to distinct positions of the lipid A backbone. RESULTS: The method was applied to lipid A isolations of Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Pseudomonas taiwanensis (P. taiwanensis). Various lipid A species were identified by their accurate masses and their structures were characterized using MS/MS experiments. Previously described lipid A structures from E. coli were identified and their structures confirmed by MS/MS. For the biotechnologically relevant strains P. putida and P. taiwanensis, we confirmed species by MS/MS, which have previously only been analyzed using MS. In addition, several lipid A species were discovered that have not been previously described in the literature. CONCLUSIONS: The combination of LC and MS/MS enabled the selective and sensitive identification and structural characterization of various lipid A species from Gram-negative bacteria. These species varied in their substituted side chains, speaking of fatty acids and phosphate groups. Characteristic product ions facilitated the assignment of side chains to distinct positions of the lipid A backbone.


Assuntos
Cromatografia de Fase Reversa/métodos , Escherichia coli/química , Lipídeo A , Pseudomonas/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Lipídeo A/análise , Lipídeo A/química , Lipídeo A/isolamento & purificação
9.
Cell Res ; 29(9): 711-724, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31399697

RESUMO

Infections caused by drug-resistant "superbugs" pose an urgent public health threat due to the lack of effective drugs; however, certain mammalian proteins with intrinsic antibacterial activity might be underappreciated. Here, we reveal an antibacterial property against Gram-negative bacteria for factors VII, IX and X, three proteins with well-established roles in initiation of the coagulation cascade. These factors exert antibacterial function via their light chains (LCs). Unlike many antibacterial agents that target cell metabolism or the cytoplasmic membrane, the LCs act by hydrolyzing the major components of bacterial outer membrane, lipopolysaccharides, which are crucial for the survival of Gram-negative bacteria. The LC of factor VII exhibits in vitro efficacy towards all Gram-negative bacteria tested, including extensively drug-resistant (XDR) pathogens, at nanomolar concentrations. It is also highly effective in combating XDR Pseudomonas aeruginosa and Acinetobacter baumannii infections in vivo. Through decoding a unique mechanism whereby factors VII, IX and X behave as antimicrobial proteins, this study advances our understanding of the coagulation system in host defense, and suggests that these factors may participate in the pathogenesis of coagulation disorder-related diseases such as sepsis via their dual functions in blood coagulation and resistance to infection. Furthermore, this study may offer new strategies for combating Gram-negative "superbugs".


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Fator IX/farmacologia , Fator VII/farmacologia , Fator X/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Animais , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Fator IX/genética , Fator IX/metabolismo , Fator VII/genética , Fator VII/metabolismo , Fator X/genética , Fator X/metabolismo , Bactérias Gram-Negativas/fisiologia , Células Hep G2 , Humanos , Lipídeo A/análise , Lipídeo A/metabolismo , Lipopolissacarídeos/análise , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray
10.
Anal Chem ; 91(17): 11482-11487, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31369253

RESUMO

By circumventing the need for a pure colony, MALDI-TOF mass spectrometry of bacterial membrane glycolipids (lipid A) has the potential to identify microbes more rapidly than protein-based methods. However, currently available bioinformatics algorithms (e.g., dot products) do not work well with glycolipid mass spectra such as those produced by lipid A, the membrane anchor of lipopolysaccharide. To address this issue, we propose a spectral library approach coupled with a machine learning technique to more accurately identify microbes. Here, we demonstrate the performance of the model-based spectral library approach for microbial identification using approximately a thousand mass spectra collected from multi-drug-resistant bacteria. At false discovery rates < 1%, our approach identified many more bacterial species than the existing approaches such as the Bruker Biotyper and characterized over 97% of their phenotypes accurately. As the diversity in our glycolipid mass spectral library increases, we anticipate that it will provide valuable information to more rapidly treat infected patients.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Membrana Celular/química , Glicolipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/ultraestrutura , Coleta de Dados , Lipídeo A/análise , Lipídeos de Membrana/análise
11.
Anal Chem ; 91(17): 11355-11361, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31359753

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using a (CO2)6k+ gas cluster ion beam (GCIB) was used to analyze Escherichia coli mutants previously identified as having impaired plasmid transfer capability related to the spread of antibiotic resistance. The subset of mutants selected were expected to result in changes in the bacterial envelope composition through the deletion of genes encoding for FabF, DapF, and Lpp, where the surface sensitivity of ToF-SIMS can be most useful. Analysis of arrays of spotted bacteria allowed changes in the lipid composition of the bacteria to be elucidated using multivariate analysis and confirmed through imaging of individual ion signals. Significant changes in chemical composition were observed, including a surprising loss of cyclopropanated fatty acids in the fabF mutant where FabF is associated with the elongation of FA(16:1) to FA(18:1) and not cyclopropane formation. The ability of the GCIB to generate increased higher mass signals from biological samples allowed intact lipid A (m/z 1796) to be detected on the bacteria and, despite a 40 keV impact energy, depth profiled through the bacterial envelope along with other high mass ions including species at m/z 1820 and 2428, attributed to ECACYC, that were only observed below the surface of the bacteria and were notably absent in the depth profile of the lpp mutant. The analysis provides new insights into the action of the specific pathways targeted in this study and paves the way for whole new avenues for the characterization of intact molecules within the bacterial envelope.


Assuntos
Membrana Celular/química , Escherichia coli/genética , Plasmídeos/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Acetiltransferases/genética , Isomerases de Aminoácido/genética , Proteínas da Membrana Bacteriana Externa/genética , Resistência Microbiana a Medicamentos , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/análise , Lipídeo A/análise , Lipídeos/análise , Lipoproteínas/genética , Proteínas Mutantes
12.
J Am Soc Mass Spectrom ; 30(9): 1679-1689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31190311

RESUMO

Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.


Assuntos
Bordetella bronchiseptica/genética , Glicosiltransferases/genética , Lipídeo A/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bordetella bronchiseptica/química , Bordetella bronchiseptica/metabolismo , Difosfatos/química , Glucosamina/química , Glicosiltransferases/química , Lipídeo A/análise , Lipídeo A/genética , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
13.
ACS Chem Biol ; 13(8): 2106-2113, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29965728

RESUMO

Lipopolysaccharides (LPS) are complex glycolipids forming the outside layer of Gram-negative bacteria. Their hydrophobic and heterogeneous nature greatly hampers their structural study in an environment similar to the bacterial surface. We have studied LPS purified from E. coli and pathogenic P. aeruginosa with long O-antigen polysaccharides assembled in solution as vesicles or elongated micelles. Solid-state NMR with magic-angle spinning permitted the identification of NMR signals arising from regions with different flexibilities in the LPS, from the lipid components to the O-antigen polysaccharides. Atomic scale data on the LPS enabled the study of the interaction of gentamicin antibiotic bound to P. aeruginosa LPS, for which we could confirm that a specific oligosaccharide is involved in the antibiotic binding. The possibility to study LPS alone and bound to a ligand when it is assembled in membrane-like structures opens great prospects for the investigation of proteins and antibiotics that specifically target such an important molecule at the surface of Gram-negative bacteria.


Assuntos
Escherichia coli/química , Lipopolissacarídeos/química , Pseudomonas aeruginosa/química , Infecções por Escherichia coli/microbiologia , Humanos , Lipídeo A/análise , Espectroscopia de Ressonância Magnética , Antígenos O/análise , Oligossacarídeos/análise , Infecções por Pseudomonas/microbiologia
14.
Ann Lab Med ; 38(6): 545-554, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30027698

RESUMO

BACKGROUND: The increasing morbidity and mortality rates associated with Acinetobacter baumannii are due to the emergence of drug resistance and the limited treatment options. We compared characteristics of colistin-resistant Acinetobacter baumannii (CR-AB) clinical isolates recovered from patients with and without prior colistin treatment. We assessed whether prior colistin treatment affects the resistance mechanism of CR-AB isolates, mortality rates, and clinical characteristics. Additionally, a proper method for identifying CR-AB was determined. METHODS: We collected 36 non-duplicate CR-AB clinical isolates resistant to colistin. Antimicrobial susceptibility testing, Sanger sequencing analysis, molecular typing, lipid A structure analysis, and in vitro synergy testing were performed. Eleven colistin-susceptible AB isolates were used as controls. RESULTS: Despite no differences in clinical characteristics between patients with and without prior colistin treatment, resistance-causing genetic mutations were more frequent in isolates from colistin-treated patients. Distinct mutations were overlooked via the Sanger sequencing method, perhaps because of a masking effect by the colistin-susceptible AB subpopulation of CR-AB isolates lacking genetic mutations. However, modified lipid A analysis revealed colistin resistance peaks, despite the population heterogeneity, and peak levels were significantly different between the groups. CONCLUSIONS: Although prior colistin use did not induce clinical or susceptibility differences, we demonstrated that identification of CR-AB by sequencing is insufficient. We propose that population heterogeneity has a masking effect, especially in colistin non-treated patients; therefore, accurate testing methods reflecting physiological alterations of the bacteria, such as phosphoethanolamine-modified lipid A identification by matrix-assisted laser desorption ionization-time of flight, should be employed.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/uso terapêutico , Colistina/uso terapêutico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Adolescente , Adulto , Idoso , Anti-Infecciosos/farmacologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/genética , Eletroforese em Gel de Campo Pulsado , Feminino , Humanos , Lipídeo A/análise , Lipídeo A/química , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
15.
Methods Mol Biol ; 1600: 167-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28478567

RESUMO

Lipopolysaccharides (LPS) are major components of the external membrane of most Gram-negative bacteria, providing them with an effective permeability barrier. They are essentially composed of a hydrophilic polysaccharide region (PS) linked to a hydrophobic one, termed lipid A. The LPS polysaccharide moiety is divided into the core oligosaccharide (OS) and O-chain repetitive elements. Depending on their individual variable fine structures, LPS may be potent immunomodulators. The lipid A structure is a key determinant for LPS activity. However, the presence of the core region, or at least of the highly charged 3-deoxy-d-manno-oct-2-ulosonic acid molecules, is also important for preserving the native lipid A conformation within individual LPS molecules. We describe herein four rapid and practical micromethods for LPS, lipid A, and core OS structural analyses. The first method allows the direct isolation of lipid A from whole bacteria cell mass; the second describes conditions for the sequential release of fatty acids enabling the characterization of their substitution position in the lipid A backbone, to be determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The third one is a microscale procedure for the mass spectra screening of LPS, lipid A, and PS using triethylamine and citric acid. The fourth method is a chromatography procedure for Rough-type LPS on thin-layer-chromatography. These methods were developed to be coupled to mass-spectrometry (e.g., MALDI-MS) but can also be used with other analytical techniques (e.g., chromatography). Examples are given with reference to two major human pathogens: Bordetella pertussis and Pseudomonas aeruginosa; to one porcine pathogen: Actinobacillus pleuropneumoniae; and to commercial samples of Salmonella Minnesota Re595 LPS.


Assuntos
Lipídeo A/química , Lipídeo A/isolamento & purificação , Lipopolissacarídeos/química , Cromatografia Gasosa , Cromatografia em Camada Fina , Lipídeo A/análise , Lipopolissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Pharm Sci ; 106(7): 1760-1763, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285019

RESUMO

Vaccine delivery systems play pivotal role in effective antigen delivery. These systems often contain adjuvants that stimulate specific immune response and are important for vaccines' efficacy and safety. Oil-in-water vaccine delivery lipid emulsion systems containing monophosphoryl lipid A (MPLA) as immune modulator have been extensively investigated in vaccine trials. Herein, we describe a simple orthogonal method, for quantitative measurement of MPLA in an oil-in-water lipid delivery system using direct transesterification reaction followed by gas-chromatography-mass spectrometry analysis. In this protocol, the transesterification reaction results in the release of fatty acid methyl esters followed by gas-chromatography-mass spectrometry-based targeted quantification of the specific 3-hydroxytetradecanoate fatty acid methyl ester to measure the concentration of MPLA in an oil-in-water lipid emulsion system.


Assuntos
Adjuvantes Imunológicos/análise , Emulsões/química , Lipídeo A/análogos & derivados , Óleos/química , Veículos Farmacêuticos/química , Vacinas/análise , Adjuvantes Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Esterificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeo A/administração & dosagem , Lipídeo A/análise , Vacinas/administração & dosagem , Água/química
17.
mBio ; 7(6)2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834207

RESUMO

The importance of the polymorphic-phase behavior of lipid A structural variations in determining their endotoxic activities has been recognized previously, but any potential role for lipid A polymorphism in controlling outer membrane structure and function has been largely ignored until now. In a recent article in mBio [7(5):e01532-16, https://doi.org/10.1128/mBio.01532-16], Katherine E. Bonnington and Meta J. Kuehn of Duke University's Department of Biochemistry make a compelling case for considering how the molecular shapes of the various lipid A structural subtypes found in the outer membrane contribute to the process of outer membrane vesicle (OMV) formation.


Assuntos
Membrana Celular/química , Lipídeo A/análise , Proteínas da Membrana Bacteriana Externa/análise , Transporte Biológico , Humanos , Lipídeos de Membrana/análise
18.
Rapid Commun Mass Spectrom ; 30(8): 1043-58, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27003042

RESUMO

RATIONALE: We report herein the electrospray ionization mass spectrometry (ESI-MS) and low-energy collision-induced dissociation tandem mass spectrometry analysis (CID-MS/MS) of a mixture of lipid As isolated from the rough lipopolysaccharide (LPS) of the mutant wild strain of the Gram-negative bacteria Aeromonas liquefaciens (SJ-19a, resistant) grown in the presence of phages. The interaction between the phages and the Gram-negative bacteria regulates host specificity and the heterogeneity of the lipid A component of the LPS. METHODS: The heterogeneous mixture of lipid As was isolated by the aqueous phenol method from the LPS of the rough wild strain of Gram-negative bacteria Aeromonas liquefaciens (SJ-19a). Hydrolysis of the LPS was with 1% acetic acid, and purification was by chromatography using Sephadex G-50 and Sephadex G-15. ESI-MS and low-energy CID-MS/MS analyses were performed with a triple-quadrupole (QqQ) and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. RESULTS: Preliminary analysis of the lipid As mixture was conducted by ESI-MS in the negative ion mode and the spectrum obtained suggested that the lipid A SJ-19a was composed of a heterogeneous mixture of different lipid A molecules. CID-MS/MS experiments confirmed the identities of the various mono-phosphorylated ß-D-GlcpN-(1→6)-α-D-GlcpN disaccharide entities. This lipid As mixture was asymmetrically substituted with fatty acids such as ((R)-14:0(3-OH)), (14:0(3-(R)-(O-12:0)) and (14:0(3-(R)-O-(14:0)) located on the O-3, O-3', N-2 and N-2' positions, respectively. CONCLUSIONS: Low-energy collision-induced dissociation tandem mass spectrometry in-space (QqQ-MS/MS) and in-time (FTICR-MS/MS) allowed the exact determination of the fatty acid acylation positions on the H2 PO3 →4-O'-ß-D-GlcpN-(1→6)-α-D-GlcpN disaccharide backbones of this heterogeneous mixture of lipid As , composed inter alia of seven different substituted lipid As , formed from the incomplete biosynthesis of their respective LPS.


Assuntos
Aeromonas/química , Lipídeo A/análise , Lipídeo A/química , Espectrometria de Massas em Tandem/métodos , Lipopolissacarídeos/química
19.
J Microbiol Methods ; 120: 68-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656001

RESUMO

The purification and characterization of Gram-negative bacterial lipid A is tedious and time-consuming. Herein we report a rapid and sensitive method to identify lipid A directly on intact bacteria without any chemical treatment or purification, using an atypical solvent system to solubilize the matrix combined with MALDI-TOF mass spectrometry.


Assuntos
Bactérias Gram-Negativas/química , Lipídeo A/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Técnicas Bacteriológicas/métodos , Endotoxinas/análise , Endotoxinas/química , Bactérias Gram-Negativas/isolamento & purificação , Lipídeo A/análise , Sensibilidade e Especificidade , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
20.
J Mass Spectrom ; 51(8): 615-628, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28239963

RESUMO

Non-phosphorylated lipid A species confer reduced inflammatory potential for the bacteria. Knowledge on their chemical structure and presence in bacterial pathogens may contribute to the understanding of bacterial resistance and activation of the host innate immune system. In this study, we report the fragmentation pathways of negatively charged, non-phosphorylated lipid A species under low-energy collision-induced dissociation conditions of an electrospray ionization quadrupole time-of-flight instrument. Charge-promoted consecutive and competitive eliminations of the acyl chains and cross-ring cleavages of the sugar residues were observed. The A-type fragment ion series and the complementary X-type fragment(s) with corresponding deprotonated carboxamide(s) were diagnostic for the distribution of the primary and secondary acyl residues on the non-reducing and the reducing ends, respectively, of the non-phosphorylated lipid A backbone. Reversed-phase liquid chromatography in combination with negative-ion electrospray ionization quadrupole time-of-flight tandem mass spectrometry could provide sufficient information on the primary and secondary acyl residues of a non-phosphorylated lipid A. As a standard, the hexa-acylated ion at m/z 1636 with the Escherichia coli-type acyl distribution (from E. coli O111) was used. The method was tested and refined with the analysis of other non-phosphorylated hexa- and several hepta-, penta-, and tetra-acylated lipid A species detected in crude lipid A fractions from E. coli O111 and Proteus morganii O34 bacteria. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeo A/análise , Lipídeo A/química , Espectrometria de Massas em Tandem/métodos , Escherichia coli/química , Modelos Moleculares , Fosforilação , Proteus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA