Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.281
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000485

RESUMO

Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.


Assuntos
Glioblastoma , Lipoproteínas HDL , Nanopartículas , Esferoides Celulares , Xantonas , Humanos , Xantonas/química , Xantonas/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Nanopartículas/química , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Esferoides Celulares/efeitos dos fármacos , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Autofagia/efeitos dos fármacos
2.
Food Res Int ; 188: 114440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823857

RESUMO

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Assuntos
Emulsões , Lipoproteínas HDL , Miosinas , Reologia , Emulsões/química , Concentração de Íons de Hidrogênio , Lipoproteínas HDL/química , Miosinas/química , Produtos da Carne/análise , Tamanho da Partícula , Óleo de Soja/química , Viscosidade , Análise Espectral Raman
3.
Lab Chip ; 24(13): 3276-3283, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38847088

RESUMO

Lipid nanoparticles often contain a phosphatidylcholine with a long chain fatty acid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). However, their preparation often encounters difficulties such as the inability to yield <20 nm nanoparticles due to the aggregation-prone behavior of DSPC. High-density lipoproteins (HDLs) are ∼10 nm protein-bound lipid nanoparticles in our body, and microfluidic preparations of HDL-mimicking nanoparticles (µHDL) have been reported. Herein, we report a new microfluidic mixing mode that enables preparation of µHDL with DSPC in high yield (≥90% on a protein basis). The critical mechanism of this mode is a spontaneous asymmetric distribution of the ethanol flow injected in a symmetric manner followed by turbulent mixing in a simple rectangular parallelepiped-shaped chip.


Assuntos
Lipoproteínas HDL , Técnicas Analíticas Microfluídicas , Nanopartículas , Fosfatidilcolinas , Fosfatidilcolinas/química , Nanopartículas/química , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Materiais Biomiméticos/química
4.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753978

RESUMO

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Assuntos
Tecido Adiposo , Lipoproteínas HDL , Animais , Camundongos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Tecido Adiposo/metabolismo , Proteínas Recombinantes , Resveratrol/farmacologia , Resveratrol/química , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Hidrogéis/química , Camundongos Endogâmicos C57BL , Humanos , Masculino , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Sistemas de Liberação de Medicamentos , Receptores Depuradores Classe B/metabolismo
5.
Sci Rep ; 14(1): 12359, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811670

RESUMO

Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.


Assuntos
Nanopartículas , Placa Aterosclerótica , Porfirinas , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Animais , Placa Aterosclerótica/diagnóstico por imagem , Nanopartículas/química , Camundongos , Porfirinas/química , Imagem Óptica/métodos , Modelos Animais de Doenças , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/patologia , Macrófagos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química
6.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760755

RESUMO

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Lipoproteínas HDL , Macrófagos , Monócitos , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Monócitos/efeitos dos fármacos , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Nanomedicina/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia
7.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791598

RESUMO

CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apolipoproteína A-I , Lipoproteínas HDL , Peixe-Zebra , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química , Lipoproteínas LDL/metabolismo , Oxirredução/efeitos dos fármacos , Sinergismo Farmacológico
8.
Protein Sci ; 33(5): e4983, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659173

RESUMO

Serum amyloid A (SAA) is a highly conserved acute-phase protein that plays roles in activating multiple pro-inflammatory pathways during the acute inflammatory response and is commonly used as a biomarker of inflammation. It has been linked to beneficial roles in tissue repair through improved clearance of lipids and cholesterol from sites of damage. In patients with chronic inflammatory diseases, elevated levels of SAA may contribute to increased severity of the underlying condition. The majority of circulating SAA is bound to lipoproteins, primarily high-density lipoprotein (HDL). Interaction with HDL not only stabilizes SAA but also alters its functional properties, likely through altered accessibility of protein-protein interaction sites on SAA. While high-resolution structures for lipid-free, or apo-, forms of SAA have been reported, their relationship with the HDL-bound form of the protein, and with other possible mechanisms of SAA binding to lipids, has not been established. Here, we have used multiple biophysical techniques, including SAXS, TEM, SEC-MALS, native gel electrophoresis, glutaraldehyde crosslinking, and trypsin digestion to characterize the lipid-free and lipid-bound forms of SAA. The SAXS and TEM data show the presence of soluble octamers of SAA with structural similarity to the ring-like structures reported for lipid-free ApoA-I. These SAA octamers represent a previously uncharacterized structure for lipid-free SAA and are capable of scaffolding lipid nanodiscs with similar morphology to those formed by ApoA-I. The SAA-lipid nanodiscs contain four SAA molecules and have similar exterior dimensions as the lipid-free SAA octamer, suggesting that relatively few conformational rearrangements may be required to allow SAA interactions with lipid-containing particles such as HDL. This study suggests a new model for SAA-lipid interactions and provides new insight into how SAA might stabilize protein-lipid nanodiscs or even replace ApoA-I as a scaffold for HDL particles during inflammation.


Assuntos
Proteína Amiloide A Sérica , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Nanoestruturas/química , Modelos Moleculares , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Ligação Proteica
9.
Protein Sci ; 33(5): e4987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607188

RESUMO

High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Membranas Artificiais , Colesterol/metabolismo , Fosfolipídeos
10.
Int J Biol Macromol ; 268(Pt 2): 131786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657927

RESUMO

This study investigated impact of high-density lipoprotein (HDL) on thermal aggregation and gelling behavior of myosin in relation to varied pHs. Results revealed that HDL modified myosin structure before and after heating, with distinct effects observed at varied pH. Under pH 5.0, both myosin and HDL-MS exhibited larger aggregates and altered microstructure; at pH 7.0 and 9.0, HDL inhibited myosin aggregation, resulting in enhanced solubility, reduced turbidity and particle size. Comparative analysis of surface hydrophobicity, free sulfhydryl groups and secondary structure highlighted distinct thermal aggregation behavior between MS and HDL-MS, with the latter showing inhibitory effects under neutral or alkaline conditions. Gelation behavior was enhanced at pH 7.0 with maximum strength, hardness, water-holding capacity and rheological properties. Under acidic pH, excessive protein aggregation resulted in increased whiteness and rough microstructure with granular aggregates. Under alkaline pH, gel network structure was weaker, possibly due to higher thermal stability of protein molecules. Scanning electron microscopy revealed expanded HDL protein particles at pH 7.0, accounting for decreased gel strength and altered rheological properties compared with myosin gel. Overall, the results indicated a positive role of HDL at varied pH in regulating thermal aggregation of myosin and further impacting heat-induced gel characteristics.


Assuntos
Géis , Temperatura Alta , Lipoproteínas HDL , Miosinas , Agregados Proteicos , Reologia , Concentração de Íons de Hidrogênio , Miosinas/química , Miosinas/metabolismo , Lipoproteínas HDL/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Animais , Tamanho da Partícula
11.
Biophys J ; 123(9): 1116-1128, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38555508

RESUMO

The physicochemical characteristics of the various subpopulations of high-density lipoproteins (HDLs) and, in particular, their surface properties determine their ability to scavenge lipids and interact with specific receptors and peptides. Five representative spheroidal HDL subpopulation models were mapped from a previously reported equilibrated coarse-grained (CG) description to an atomistic representation for subsequent molecular dynamics simulation. For each HDL model a range of finer-level analyses was undertaken, including the component-wise characterization of HDL surfaces, the average size and composition of hydrophobic surface patches, dynamic protein secondary structure monitoring, and the proclivity for solvent exposure of the proposed ß-amyloid (Aß) binding region of apolipoprotein A-I (apoA-I), "LN." This study reveals that previously characterized ellipsoidal HDL3a and HDL2a models revert to a more spherical geometry in an atomistic representation due to the enhanced conformational flexibility afforded to the apoA-I protein secondary structure, allowing for enhanced surface lipid packing and lower overall surface hydrophobicity. Indeed, the proportional surface hydrophobicity and apoA-I exposure reduced with increasing HDL size, consistent with previous characterizations. Furthermore, solvent exposure of the "LN" region of apoA-I was exclusively limited to the smallest HDL3c model within the timescale of the simulations, and typically corresponded to a distinct loss in secondary structure across the "LN" region to form part of a significant contiguous hydrophobic patch on the HDL surface. Taken together, these findings provide preliminary evidence for a subpopulation-specific interaction between HDL3c particles and circulating hydrophobic species such as Aß via the exposed "LN" region of apoA-I.


Assuntos
Apolipoproteína A-I , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas HDL , Simulação de Dinâmica Molecular , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Estrutura Secundária de Proteína , Humanos
12.
Small ; 20(28): e2308539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326103

RESUMO

Tumor heterogeneity remains a significant obstacle in cancer therapy due to diverse cells with varying treatment responses. Cancer stem-like cells (CSCs) contribute significantly to intratumor heterogeneity, characterized by high tumorigenicity and chemoresistance. CSCs reside in the depth of the tumor, possessing low reactive oxygen species (ROS) levels and robust antioxidant defense systems to maintain self-renewal and stemness. A nanotherapeutic strategy is developed using tumor-penetrating peptide iRGD-modified high-density lipoprotein (HDL)-mimetic nanodiscs (IPCND) that ingeniously loaded with pyropheophorbide-a (Ppa), bis (2-hydroxyethyl) disulfide (S-S), and camptothecin (CPT) by synthesizing two amphiphilic drug-conjugated sphingomyelin derivatives. Photoactivatable Ppa can generate massive ROS which as intracellular signaling molecules effectively shut down self-renewal and trigger differentiation of the CSCs, while S-S is utilized to deplete GSH and sustainably imbalance redox homeostasis by reducing ROS clearance. Simultaneously, the depletion of GSH is accompanied by the release of CPT, which leads to subsequent cell death. This dual strategy successfully disturbed the redox equilibrium of CSCs, prompting their differentiation and boosting the ability of CPT to kill CSCs upon laser irradiation. Additionally, it demonstrated a synergistic anti-cancer effect by concurrently eliminating therapeutically resistant CSCs and bulk tumor cells, effectively suppressing tumor growth in CSC-enriched heterogeneous colon tumor mouse models.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Homeostase , Células-Tronco Neoplásicas , Oxirredução , Espécies Reativas de Oxigênio , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Humanos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camptotecina/farmacologia , Camptotecina/química , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Nanoestruturas/química , Camundongos , Biomimética/métodos , Glutationa/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia
13.
J Diabetes Investig ; 15(7): 805-816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38416054

RESUMO

Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and ß-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.


Assuntos
Lipoproteínas HDL , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus/metabolismo
14.
Neuron ; 112(7): 1100-1109.e5, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266643

RESUMO

The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.


Assuntos
Apolipoproteínas E , Astrócitos , Lipoproteínas , Astrócitos/metabolismo , Apolipoproteínas E/genética , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Sistema Nervoso Central/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E3/metabolismo
15.
Am J Kidney Dis ; 83(1): 9-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678743

RESUMO

RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) leads to lipid and metabolic abnormalities, but a comprehensive investigation of lipids, lipoprotein particles, and circulating metabolites associated with the risk of CKD has been lacking. We examined the associations of nuclear magnetic resonance (NMR)-based metabolomics data with CKD risk in the UK Biobank study. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: A total of 91,532 participants in the UK Biobank Study without CKD and not receiving lipid-lowering therapy. EXPOSURE: Levels of metabolites including lipid concentration and composition within 14 lipoprotein subclasses, as well as other metabolic biomarkers were quantified via NMR spectroscopy. OUTCOME: Incident CKD identified using ICD codes in any primary care data, hospital admission records, or death register records. ANALYTICAL APPROACH: Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. RESULTS: We identified 2,269 CKD cases over a median follow-up period of 13.1 years via linkage with the electronic health records. After adjusting for covariates and correcting for multiple testing, 90 of 142 biomarkers were significantly associated with incident CKD. In general, higher concentrations of very-low-density lipoprotein (VLDL) particles were associated with a higher risk of CKD whereas higher concentrations of high-density lipoprotein (HDL) particles were associated with a lower risk of CKD. Higher concentrations of cholesterol, phospholipids, and total lipids within VLDL were associated with a higher risk of CKD, whereas within HDL they were associated with a lower risk of CKD. Further, higher triglyceride levels within all lipoprotein subclasses, including all HDL particles, were associated with greater risk of CKD. We also identified that several amino acids, fatty acids, and inflammatory biomarkers were associated with risk of CKD. LIMITATIONS: Potential underreporting of CKD cases because of case identification via electronic health records. CONCLUSIONS: Our findings highlight multiple known and novel pathways linking circulating metabolites to the risk of CKD. PLAIN-LANGUAGE SUMMARY: The relationship between individual lipoprotein particle subclasses and lipid-related traits and risk of chronic kidney disease (CKD) in general population is unclear. Using data from 91,532 participants in the UK Biobank, we evaluated the associations of metabolites measured using nuclear magnetic resonance testing with the risk of CKD. We identified that 90 out of 142 lipid biomarkers were significantly associated with incident CKD. We found that very-low-density lipoproteins, high-density lipoproteins, the lipid concentration and composition within these lipoproteins, triglycerides within all the lipoprotein subclasses, fatty acids, amino acids, and inflammation biomarkers were associated with CKD risk. These findings advance our knowledge about mechanistic pathways that may contribute to the development of CKD.


Assuntos
Lipoproteínas , Insuficiência Renal Crônica , Humanos , Lipoproteínas/química , Lipoproteínas HDL/química , Espectroscopia de Ressonância Magnética/métodos , Lipoproteínas VLDL/química , Triglicerídeos , Biomarcadores , Insuficiência Renal Crônica/epidemiologia
16.
Mol Pharm ; 20(11): 5454-5462, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37781907

RESUMO

Phosphatidylserine (PS) is an anionic phospholipid component in endogenous high-density lipoprotein (HDL). With the intrinsic anti-inflammatory effects of PS and the correlation between PS content and HDL functions, it was hypothesized that incorporating PS would enhance the therapeutic effects of HDL mimetic particles. To test this hypothesis, a series of synthetic high-density lipoproteins (sHDLs) were prepared with an apolipoprotein A-I (ApoA-1) mimetic peptide, 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-glycero-3-phospho-l-serine (POPS). Incorporating PS was found to improve the particle stability of sHDLs. Moreover, increasing the PS content in sHDLs enhanced the anti-inflammatory effects on lipopolysaccharide-activated macrophages and endothelial cells. The incorporation of PS had no negative impact on cholesterol efflux capacity, in vivo cholesterol mobilization, and did not affect the pharmacokinetic profiles of sHDLs. Such results suggest the therapeutic potential of PS-containing sHDLs for inflammation resolution in atherosclerosis and other inflammatory diseases.


Assuntos
Células Endoteliais , Lipoproteínas HDL , Lipoproteínas HDL/química , Células Endoteliais/metabolismo , Colesterol/química , Fosfolipídeos , Anti-Inflamatórios/farmacologia
17.
Food Res Int ; 173(Pt 2): 113413, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803748

RESUMO

According to previous research, adding CaCl2 to the salting solution improves the quality of salted separated egg yolk. To further understand the improvement mechanism of CaCl2, this paper investigated the effect of CaCl2 on the structure of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) during the salting process. The results indicated that the addition of CaCl2 can affect the composition of HDL and LDL apolipoproteins, improving the orderliness of the HDL structure and the looseness of the LDL structure. It was discovered by atomic force microscopy (AFM) that adding CaCl2 to the salting solution can weaken the aggregation behavior of HDL. Simultaneously, the addition of CaCl2 decreased the relative content of intermolecular ß-sheets in the secondary structure of HDL and LDL, influenced their tertiary conformation, and prevented HDL and LDL from participating in the formation of a three-dimensional gel structure by influencing their hydrogen bonds and hydrophobic interactions.


Assuntos
Lipoproteínas HDL , Lipoproteínas LDL , Lipoproteínas HDL/análise , Lipoproteínas HDL/química , Lipoproteínas LDL/química , Gema de Ovo/química , Cloreto de Cálcio/farmacologia
18.
Biochim Biophys Acta Biomembr ; 1865(8): 184201, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541644

RESUMO

Surface lipids influence the biological activities of high-density lipoproteins (HDLs) but their species-specific effects on HDL structure, dynamics, and surface interactome has remained unclear. Building upon the five-lipid species HDL models developed and characterised in previous work, representative models of the major HDL subpopulations found in human plasma containing apolipoprotein A-I (apoA-I) have been studied using molecular dynamics simulation to describe their varying degrees of surface lipidome complexity. Specifically, two additional sets of representative HDL subpopulation particles were developed, one with sphingomyelin (SM) and the other with SM, phosphatidylethanolamine, phosphatidylinositol, and ceramide in quantities reflecting average levels characterised for HDL subpopulations derived from normolipidemic patients. These lipid species were assessed in terms of HDL size, morphology, dynamics, and overall interactome. The findings reveal that the presence of a representative SM fraction marginally enhanced HDL interfacial curvature and surface monolayer rigidity, manifesting in tighter phospholipid packing and slower surface lipid dynamics relative to SM-deficient HDL models. Furthermore, the presence of SM resulted in a reduction in the solvent exposure of core lipids and cholesterol molecules, whilst also enhancing apolipoprotein conformational flexibility and its overall twisting across the HDL surface. The hydrophobicity of apoA-I-bound lipid patches and the proportion of apoA-I hydrophobic surface area is enhanced by the overall lipidation of apoA-I irrespective of lipid composition. These findings offer new insights into how the surface lipid composition of different HDL subpopulations can significantly impact the overall interactome of HDL particles, potentially influencing subpopulation-specific biological functions like lipid scavenging and receptor interactions.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Humanos , Apolipoproteína A-I/química , Lipoproteínas HDL/química , Colesterol , Fosfolipídeos/química , Apolipoproteínas
19.
Curr Drug Deliv ; 20(5): 629-641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35430991

RESUMO

BACKGROUND: Reverse cholesterol transportation is essential for high-density lipoprotein (HDL) particles to reduce the cholesterol burden of peripheral cells. Studies have shown that particle size plays a crucial role in the cholesterol efflux capacity of HDLs, and the reconstituted HDLs (rHDLs) possess a similar function to natural ones. OBJECTIVE: The study aimed to investigate the effect of particle size on the cholesterol efflux capacity of discoidal rHDLs and whether drug loadings may have an influence on this effect. METHODS: Different-sized simvastatin-loaded discoidal rHDLs (ST-d-rHDLs) resembling nascent HDL were prepared by optimizing key factors related to the sodium cholate of film dispersion-sodium cholate dialysis method with a single controlling factor. Their physicochemical properties, such as particle size, zeta potential, and morphology in vitro, were characterized, and their capacity of cellular cholesterol efflux in foam cells was evaluated. RESULTS: We successfully constructed discoidal ST-d-rHDLs with different sizes (13.4 ± 1.4 nm, 36.6 ± 2.6 nm, and 68.6 ± 3.8 nm) with over 80% of encapsulation efficiency and sustained drug release. Among them, the small-sized ST-d-rHDL showed the strongest cholesterol efflux capacity and inhibitory effect on intracellular lipid deposition in foam cells. In addition, the results showed that the loaded drug did not compromise the cellular cholesterol efflux capacity of different-sized ST-d-rHDL. CONCLUSION: Compared to the larger-sized ST-d-rHDLs, the small-sized ST-d-rHDL possessed enhanced cellular cholesterol efflux capacity similar to drug-free one, and the effect of particle size on cholesterol efflux was not influenced by the drug loading.


Assuntos
Lipoproteínas HDL , Sinvastatina , Lipoproteínas HDL/química , Sinvastatina/farmacologia , Colato de Sódio , Colesterol , Macrófagos
20.
Eur J Pharm Biopharm ; 182: 115-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529255

RESUMO

Numerous studies have demonstrated that dysfunctional high-density lipoprotein (HDL), especially oxidized HDL (OxHDL), could generate multifaceted in vivo proatherogenic effects that run counter to the antiatherogenic activities of HDL. It thereby reminded us that the in vitro reconstituted HDL (rHDL) might encountered with oxidation-induced dysfunction. Accordingly, a green-inspired method was employed to recycle non-split HDL from human plasma fraction IV. Then it was compared with rHDL formulated by an ethanol-injection method in terms of physicochemical properties and anti-dysfunctional activities. Results exhibited that rHDL oxidation extent exceeded that of non-split HDL evidenced by higher malondialdehy content, weaker inhibition on low-density lipoprotein (LDL) oxidation and more superoxide anion. The reserved paraoxonase-1 activity on non-split HDL could partially explain for above experimental results. In the targeted transport mechanism experiment, upon SR-BI receptor inhibition and/or CD36 receptor blockage, the almost unchanged non-split HDL uptake in lipid-laden macrophage indicated its negligible oxidation modification profile with regard to rHDL again. Furthermore, compared to rHDL, better macrophage biofunctions were observed for non-split HDL as illustrated by accelerated cholesterol efflux, inhibited oxidized LDL uptake and lessened cellular lipid accumulation. Along with decreased ROS secretion, obviously weakened oxidative stress damage was also detected under treatment with non-split HDL. More importantly, foam cells with non-split HDL-intervention inspired an enhanced inflammation repression and apoptosis inhibition effect. Collectively, the anti-dysfunctional activities of non-split HDL make it suitable as a potential nanocarrier platform for cardiovascular drug payload and delivery.


Assuntos
Lipoproteínas HDL , Macrófagos , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Transporte Biológico , Oxirredução , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA