Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Food Chem ; 458: 140187, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950510

RESUMO

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.


Assuntos
Cisteína , Enzimas Imobilizadas , Lipase , Lipoxigenase , Óleo de Soja , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/química , Lipase/metabolismo , Óleo de Soja/química , Cisteína/química , Lipoxigenase/química , Lipoxigenase/metabolismo , Biocatálise , Ácidos Linoleicos/química , Peróxidos Lipídicos
2.
J Inorg Biochem ; 259: 112618, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986289

RESUMO

Manganese hydroxido (Mn-OH) complexes supported by a tripodal N,N',N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3-) ligand have been synthesized and characterized by spectroscopic techniques including UV-vis and electron paramagnetic resonance (EPR) spectroscopies. X-ray diffraction (XRD) methods were used to confirm the solid-state molecular structures of {Na2[MnIIpoat(OH)]}2 and {Na[MnIIIpoat(OH)]}2 as clusters that are linked by the electrostatic interactions between the sodium counterions and the oxygen atom of the ligated hydroxido unit and the phosphinic (P=O) amide groups of [poat]3-. Both clusters feature two independent monoanionic fragments in which each contains a trigonal bipyramidal Mn center that is comprised of three equatorial deprotonated amide nitrogen atoms, an apical tertiary amine, and an axial hydroxido ligand. XRD analyses of {Na[MnIIIpoat(OH)]}2 also showed an intramolecular hydrogen bonding interaction between the MnIII-OH unit and P=O group of [poat]3-. Crystalline {Na[MnIIIpoat(OH)]}2 remains as clusters with Na+---O interactions in solution and is unreactive toward external substrates. However, conductivity studies indicated that [MnIIIpoat(OH)]- generated in situ is monomeric and reactivity studies found that it is capable of cleaving C-H bonds, illustrating the importance of solution-phase speciation and its direct effect on chemical reactivity. Synopsis: Manganese-hydroxido complexes were synthesized to study the influence of H-bonds in the secondary coordination sphere and their effects on the oxidative cleavage of substrates containing C-H bonds.


Assuntos
Complexos de Coordenação , Manganês , Manganês/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Lipoxigenase/química , Lipoxigenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química
3.
Food Chem ; 457: 140032, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936117

RESUMO

The aim of the presented study was to evaluate the release of the enzymatically initiated production of hexanal from double emulsion electrospun bio-active membranes at a temperature of fruit storage. Among different formulations of water-in-oil (W1/O) primary emulsions, the emulsion composed of 12% w/v Tween20 and 0.1 M NaCl in water (W1) and 6% of poly(glycerol) poly(ricinoleate) dissolved in sunflower oil (O) using W1/O ratio of 80/20 (w/w) (Tween20-NaCl/6% PGPR) was selected, for further incorporation of enzymes, based on the lowest average droplet size (391.0 ± 15.6 nm), low polydispersity index (0.255 ± 0.07), and good gravitational stability also after 14 days. Both enzymes, lipase and lipoxygenase are needed to produce hexanal (up to 58 mg/L). Additionally, double emulsions were prepared with sufficient conductivity and viscosity using different W1/O to W2 ratios for electrospinning. From the selected electrospun membrane, up to 4.5 mg/L of hexanal was released even after 92 days.


Assuntos
Emulsões , Lipase , Óleo de Girassol , Emulsões/química , Emulsões/metabolismo , Óleo de Girassol/química , Lipase/química , Lipase/metabolismo , Lipoxigenase/metabolismo , Lipoxigenase/química , Biocatálise , Membranas Artificiais
4.
Biochemistry ; 63(10): 1335-1346, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690768

RESUMO

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Assuntos
Proteínas Fúngicas , Lipoxigenase , Domínio Catalítico , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosilação , Cinética , Lipoxigenase/metabolismo , Lipoxigenase/química , Lipoxigenase/genética , Modelos Moleculares , Polissacarídeos/metabolismo , Polissacarídeos/química , Conformação Proteica , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
5.
Biochemistry ; 62(10): 1531-1543, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37115010

RESUMO

Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.


Assuntos
Lipoxigenase , Simulação de Dinâmica Molecular , Animais , Lipoxigenase/química , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Ácido Linoleico/química
6.
J Biol Chem ; 299(3): 102898, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639029

RESUMO

Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lipoxigenase , Oxilipinas , Arabidopsis/metabolismo , Ácido Araquidônico , Ácidos Graxos Insaturados , Ácido Linoleico , Lipoxigenase/química , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
Ultrason Sonochem ; 92: 106229, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459902

RESUMO

Lipid oxidation will lead to the deterioration of flavor, color and texture of aquatic products with high fatty acid content. The mechanism of ultrasound (US) combined with rosmarinic acid (RA) on lipid oxidation and endogenous enzyme activities of large yellow croaker during cold-storage (4 ℃) was investigated. The result showed that the US and RA have synergistic effects in delaying lipid oxidation and inhibiting endogenous lipase and lipoxygenase (LOX) activities related to oxidation. The inhibition of LOX activity by RA was dose-dependent, and US showed a negative effect on the inhibition of enzyme activity in the presence of low concentration RA. Moreover, RA changes the enzyme structure through static fluorescence quenching and interaction with enzyme molecules. Hydrogen bonding and hydrophobic interaction are the main interaction forces between RA and LOX. This study could provide basic mechanism of US treatment cooperating with polyphenols to inhibit lipid oxidation during food preservation.


Assuntos
Lipoxigenase , Perciformes , Animais , Lipoxigenase/química , Ultrassom , Ácidos Graxos , Ácido Rosmarínico
8.
FEBS Lett ; 597(1): 79-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239559

RESUMO

Formulations of hydrogen tunneling in enzyme-catalysed C-H activation reactions indicate enthalpic barriers to reaction that are independent of chemical steps and dependent on the protein scaffold. A tool to identify catalytically relevant site-specific protein thermal networks has emerged from temperature-dependent hydrogen deuterium exchange (TDHDX). Focusing on mutant enzyme forms with altered activation energies for catalysis, TDHDX provides a comparative analysis of the impact of mutation on Ea for local protein unfolding. Identified thermal networks appear unrelated to protein scaffold conservation and track to the dictates of the catalysed reaction, including sites for metal binding. The positions of thermal networks provide a framework for further understanding of time-dependent, functionally relevant protein motions. Measurement of nanosecond Stokes shifts at the surface of the thermal network in soybean lipoxygenase yields activation energies that are identical to Ea values measured for kcat . This finding identifies a rapid (> nanosecond), long-range and cooperative structural reorganization as the thermal barrier to catalysis. A model for protein dynamics is put forward that integrates broadly distributed protein conformational sampling with protein embedded thermal networks.


Assuntos
Hidrogênio , Proteínas , Modelos Moleculares , Hidrogênio/química , Termodinâmica , Temperatura , Catálise , Lipoxigenase/genética , Lipoxigenase/química , Lipoxigenase/metabolismo , Cinética
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121100, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272121

RESUMO

5-lipoxygenase (5-LOX) was a key enzyme involved in many inflammatory diseases. Sec-O-glucosylhamaudol (SOG) was a chromone found in Saposhnikovia divaricata (Turcz.) Schischk (S. divaricate). The potato-derived 5-LOX (p-5-LOX) and human recombinant 5-LOX (h-5-LOX) were selected as model protein due to their simple usability and high stability in this study. Thus, the binding interactions of p-5-LOX and h-5-LOX with SOG were investigated by multi-spectroscopy and molecular docking. As a result, the fluorescence intensities of the two 5-LOX were quenched statically by SOG. However, the binding ability of SOG to h-5-LOX was higher than that of p-5-LOX at the same temperature. The results of multi-spectroscopy revealed that the conformation and micro-environment of the two 5-LOX proteins were changed after binding with SOG. Fluorescence assay and molecular docking indicated that hydrogen bond and electrostatic gravitation were the main forces between the two 5-LOX and SOG. Our results here suggested that SOG may exert anti-inflammatory effect by inhibiting 5-LOX activity.


Assuntos
Solanum tuberosum , Araquidonato 5-Lipoxigenase , Humanos , Lipoxigenase/química , Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Solanum tuberosum/metabolismo , Análise Espectral
10.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885729

RESUMO

Manganese lipoxygenase (MnLOX) is an enzyme that converts polyunsaturated fatty acids to alkyl hydroperoxides. In proposed mechanisms for this enzyme, the transfer of a hydrogen atom from a substrate C-H bond to an active-site MnIII-hydroxo center initiates substrate oxidation. In some proposed mechanisms, the active-site MnIII-hydroxo complex is regenerated by the reaction of a MnIII-alkylperoxo intermediate with water by a ligand substitution reaction. In a recent study, we described a pair of MnIII-hydroxo and MnIII-alkylperoxo complexes supported by the same amide-containing pentadentate ligand (6Medpaq). In this present work, we describe the reaction of the MnIII-hydroxo unit in C-H and O-H bond oxidation processes, thus mimicking one of the elementary reactions of the MnLOX enzyme. An analysis of kinetic data shows that the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ oxidizes TEMPOH (2,2'-6,6'-tetramethylpiperidine-1-ol) faster than the majority of previously reported MnIII-hydroxo complexes. Using a combination of cyclic voltammetry and electronic structure computations, we demonstrate that the weak MnIII-N(pyridine) bonds lead to a higher MnIII/II reduction potential, increasing the driving force for substrate oxidation reactions and accounting for the faster reaction rate. In addition, we demonstrate that the MnIII-alkylperoxo complex [MnIII(OOtBu)(6Medpaq)]+ reacts with water to obtain the corresponding MnIII-hydroxo species, thus mimicking the ligand substitution step proposed for MnLOX.


Assuntos
Complexos de Coordenação/química , Peróxidos Lipídicos/química , Lipoxigenase/química , Manganês/química , Biomimética , Domínio Catalítico/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Hidrogênio/química , Ligantes , Peróxidos Lipídicos/metabolismo , Lipoxigenase/efeitos dos fármacos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Oxigênio/química , Piperidinas/química , Piperidinas/farmacologia
11.
J Am Chem Soc ; 143(37): 15159-15175, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494835

RESUMO

The enzymes manganese lipoxygenase (MnLOX) and manganese superoxide dismutase (MnSOD) utilize mononuclear Mn centers to effect their catalytic reactions. In the oxidized MnIII state, the active site of each enzyme contains a hydroxo ligand, and X-ray crystal structures imply a hydrogen bond between this hydroxo ligand and a cis carboxylate ligand. While hydrogen bonding is a common feature of enzyme active sites, the importance of this particular hydroxo-carboxylate interaction is relatively unexplored. In this present study, we examined a pair of MnIII-hydroxo complexes that differ by a single functional group. One of these complexes, [MnIII(OH)(PaPy2N)]+, contains a naphthyridinyl moiety capable of forming an intramolecular hydrogen bond with the hydroxo ligand. The second complex, [MnIII(OH)(PaPy2Q)]+, contains a quinolinyl moiety that does not permit any intramolecular hydrogen bonding. Spectroscopic characterization of these complexes supports a common structure, but with perturbations to [MnIII(OH)(PaPy2N)]+, consistent with a hydrogen bond. Kinetic studies using a variety of substrates with activated O-H bonds, revealed that [MnIII(OH)(PaPy2N)]+ is far more reactive than [MnIII(OH)(PaPy2Q)]+, with rate enhancements of 15-100-fold. A detailed analysis of the thermodynamic contributions to these reactions using DFT computations reveals that the former complex is significantly more basic. This increased basicity counteracts the more negative reduction potential of this complex, leading to a stronger O-H BDFE in the [MnII(OH2)(PaPy2N)]+ product. Thus, the differences in reactivity between [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ can be understood on the basis of thermodynamic considerations, which are strongly influenced by the ability of the latter complex to form an intramolecular hydrogen bond.


Assuntos
Lipoxigenase/química , Compostos de Manganês/química , Superóxido Dismutase/química , Domínio Catalítico , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligação de Hidrogênio , Lipoxigenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Conformação Proteica , Superóxido Dismutase/metabolismo , Termodinâmica
12.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443516

RESUMO

Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1-17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases.


Assuntos
Antioxidantes/química , Aterosclerose/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/farmacologia , Aterosclerose/patologia , Cromanos/química , Cromanos/farmacologia , Desenho de Fármacos , Humanos , Hiperlipidemias/patologia , Hipolipemiantes/síntese química , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Inflamação/patologia , Lipoxigenase/química , Lipoxigenase/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Parabenos/química , Parabenos/farmacologia , Relação Estrutura-Atividade
13.
J Am Chem Soc ; 143(33): 13145-13155, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383499

RESUMO

Iron complexes that model the structural and functional properties of the active iron site in rabbit lipoxygenase are described. The ligand sphere of the mononuclear pseudo-octahedral cis-(carboxylato)(hydroxo)iron(III) complex, which is completed by a tetraazamacrocyclic ligand, reproduces the first coordination shell of the active site in the enzyme. In addition, two corresponding iron(II) complexes are presented that differ in the coordination of a water molecule. In their structural and electronic properties, both the (hydroxo)iron(III) and the (aqua)iron(II) complex reflect well the only two essential states found in the enzymatic mechanism of peroxidation of polyunsaturated fatty acids. Furthermore, the ferric complex is shown to undergo hydrogen atom abstraction reactions with O-H and C-H bonds of suitable substrates, and the bond dissociation free energy of the coordinated water ligand of the ferrous complex is determined to be 72.4 kcal·mol-1. Theoretical investigations of the reactivity support a concerted proton-coupled electron transfer mechanism in close analogy to the initial step in the enzymatic mechanism. The propensity of the (hydroxo)iron(III) complex to undergo H atom abstraction reactions is the basis for its catalytic function in the aerobic peroxidation of 2,4,6-tri(tert-butyl)phenol and its role as a radical initiator in the reaction of dihydroanthracene with oxygen.


Assuntos
Compostos de Ferro/metabolismo , Lipoxigenase/metabolismo , Animais , Domínio Catalítico , Compostos de Ferro/síntese química , Compostos de Ferro/química , Lipoxigenase/química , Estrutura Molecular , Coelhos
14.
Nat Commun ; 12(1): 4299, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262038

RESUMO

Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Nanomedicina/métodos , Neoplasias/terapia , Ablação por Radiofrequência , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/uso terapêutico , Catálise , Linhagem Celular Tumoral , Terapia Combinada , Ferroptose/efeitos dos fármacos , Hemina/química , Hemina/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoxigenase/química , Lipoxigenase/uso terapêutico , Camundongos , Metástase Neoplásica , Neoplasia Residual , Neoplasias/imunologia , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Coelhos
15.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200696

RESUMO

Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 µg/mL and 27.682 µg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/química , Passiflora/química , Extratos Vegetais/farmacologia , Frutas/química , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Sementes/química , Solventes/química
16.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201147

RESUMO

Many plants that are commonly used in folk medicine have multidirectional biological properties confirmed by scientific research. One of them is Aerva lanata (L.) Juss. (F. Amaranthaceae). It is widely used, but there are very few scientific data about its chemical composition and pharmacological activity. The aim of the present study was to investigate the chemical composition of phenolic acid (PA)-rich fractions isolated from methanolic extracts of A. lanata (L.) Juss. herb using the liquid/liquid extraction method and their potential antioxidant, anti-inflammatory, and anti-diabetic properties. The free PA fraction (FA), the PA fraction (FB) released after acid hydrolysis, and the PA fraction (FC) obtained after alkaline hydrolysis were analysed using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). The phenolic profile of each sample showed a high concentration of PAs and their presence in A. lanata (L.) Juss. herb mainly in bound states. Thirteen compounds were detected and quantified in all samples, including some PAs that had not been previously detected in this plant species. Bioactivity assays of all fractions revealed high 2,2-diphenyl-1-picrylhydrazyl (DPPH•) (2.85 mM Trolox equivalents (TE)/g) and 2,2-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (2.88 mM TE/g) scavenging activity. Fraction FB definitely exhibited not only the highest antiradical activity but also the strongest xanthine oxidase (XO) (EC50 = 1.77 mg/mL) and lipoxygenase (LOX)(EC50 = 1.88 mg/mL) inhibitory potential. The fraction had the best anti-diabetic properties, i.e., mild inhibition of α-amylase (EC50 = 7.46 mg/mL) and strong inhibition of α-glucosidase (EC50 = 0.30 mg/mL). The activities of all analysed samples were strongly related to the presence of PA compounds and the total PA content.


Assuntos
Amaranthaceae/química , Anti-Inflamatórios/química , Antioxidantes/química , Hidroxibenzoatos/química , Hipoglicemiantes/química , Extratos Vegetais/química , Flavonoides/química , Lipoxigenase/química , Medicina Tradicional/métodos , Metanol/química , Fenóis/química , Xantina Oxidase/química , alfa-Amilases/química , alfa-Glucosidases/química
17.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198914

RESUMO

The five-membered heterocyclic group of pyrazoles/pyrazolines plays important role in drug discovery. Pyrazoles and pyrazolines present a wide range of biological activities. The synthesis of the pyrazolines and pyrazole derivatives was accomplished via the condensation of the appropriate substituted aldehydes and acetophenones, suitable chalcones and hydrazine hydrate in absolute ethanol in the presence of drops of glacial acetic acid. The compounds are obtained in good yields 68-99% and their structure was confirmed using IR, 1H-NMR, 13C-NMR and elemental analysis. The novel derivatives were studied in vitro for their antioxidant, anti-lipid peroxidation (AAPH) activities and inhibitory activity of lipoxygenase. Both classes strongly inhibit lipid peroxidation. Compound 2g was the most potent lipoxygenase inhibitor (IC50 = 80 µM). The inhibition of the carrageenin-induced paw edema (CPE) and nociception was also determined, with compounds 2d and 2e being the most potent. Compound 2e inhibited nociception higher than 2d. Pyrazoline 2d was found to be active in a preliminary test, for the investigation of anti-adjuvant-induced disease (AID) activity. Pyrazoline derivatives were found to be more potent than pyrazoles. Docking studies of the most potent LOX inhibitor 2g highlight hydrophobic interactions with VAL126, PHE143, VAL520 and LYS526 and a halogen bond between the chlorine atom and ARG182.


Assuntos
Anti-Inflamatórios/síntese química , Inibidores de Lipoxigenase/síntese química , Lipoxigenase/química , Pirazóis/síntese química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirazóis/química , Pirazóis/farmacologia , Ratos
18.
Gene ; 796-797: 145797, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175389

RESUMO

Verticillium wilt is a major limiting factor for sustainable production of cotton but the mechanism of controlling this disease is still poorly understood. Lipoxygenase (LOX)-derived oxylipins have been implicated in defense responses against diverse pathogens; however there is limited information about the functional characterization of LOXs in response to Verticillium dahliae infection. In this study, we report the characterization of a cotton LOX gene, GhLOX2, which phylogenetically clustered into 13-LOX subfamily and is closely related to Arabidopsis LOX2 gene. GhLOX2 was predominantly expressed in leaves and strongly induced following V. dahliae inoculation and treatment of methyl jasmonate (MeJA). RNAi-mediated knock-down of GhLOX2 enhanced cotton susceptibility to V. dahliae and was coupled with suppression of jasmonic acid (JA)-related genes both after inoculation with the cotton defoliating strain V991 or MeJA treatment. Interestingly, lignin contents, transcripts of lignin synthesis genes and H2O2 contents were also decreased in GhLOX2-silenced plants. This study suggests that GhLOX2 is involved in defense responses against infection of V. dahliae in cotton and supports that JA is one of the major defense hormones against this pathogen.


Assuntos
Ascomicetos , Ciclopentanos/metabolismo , Resistência à Doença/genética , Gossypium/genética , Gossypium/microbiologia , Lipoxigenase/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Técnicas de Silenciamento de Genes , Gossypium/enzimologia , Lignina/biossíntese , Lignina/genética , Lipoxigenase/química , Lipoxigenase/classificação , Redes e Vias Metabólicas , Filogenia , Interferência de RNA
19.
Steroids ; 172: 108857, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945799

RESUMO

Natural product is a well-known source of bioactive compounds. Herein, a steroidal compound stigmasta-7,22-diene-3-one (stigmastadienone) has been isolated from Isodon rugosus. The potency of isolated compound has been tested for several in-vitro targets. The acetyl and butyrylcholinesterase assays were performed using Ellman's procedure. For the in-vitro antidiabetic potential, α-glucosidase inhibitory assay was performed. Similarly, the cyclo and lipoxygenase pathways were studied to find its potential role in the management of inflammation and analgesia. The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2) assays were performed for the antioxidant potentials. Docking studies were performed against acetylcholinesterase, cyclooxygenase and lipoxygenase targets. In anticholinesterase assays, stigmastadienone exhibited half-maximal inhibitory concentration (IC50) values of 13.52 and 11.53 µg/ml for acetyl and butyrylcholinesterase respectively. The observed IC50 values for that of galantamine were 6.07 and 4.42 µg/ml for acety and butyrylcholinesterase respectively. In inhibiting α-glucosidase enzyme, the compound showed mediocre IC50 of 109.40 µg/ml compared to the standard acarbose (7.60 µg/ml). The stigmastadienone proved to be an excellent inhibitor of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) attaining IC50 values of 4.72 and 3.36 µg/ml respectively. The standard drugs IC50 values for COX-2 (celecoxib) and 5-LOX (montelukast) were 3.81 and 2.74 µg/ml respectively. The enzymatic activities of stigmastadienone were also supplemented with antioxidant results, specifically it was more dominant against DPPH and ABTS free radicals. Docking studies showed that only the carbonyl oxygen is able to form hydrogen bond interaction with the residues. In conclusions, the stigmastadienone has been isolated from Isodon rugosus for the first time. Moreover, the compound has been evaluated for several biochemical pathways which suggest its pharmacological role on the explored targets.


Assuntos
Colestenonas/química , Inibidores da Colinesterase/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Isodon/química , Inibidores de Lipoxigenase/farmacologia , Extratos Vegetais/farmacologia , alfa-Glucosidases/farmacologia , Acetilcolinesterase/química , Butirilcolinesterase/química , Humanos , Lipoxigenase/química , Simulação de Acoplamento Molecular , Prostaglandina-Endoperóxido Sintases/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-33662546

RESUMO

Endocannabinoids, such as anandamide (ANA) and 2-arachidonoylglycerol (2AG), are lipid-signaling molecules that can be oxidized by lipid-peroxidizing enzymes, and this oxidation alters the bioactivity of these lipid mediators. Here, under strictly comparable experimental conditions, we explored whether ANA and 2AG function as substrates for four human (ALOX15, ALOX15B, ALOX12, ALOX5) and three mice Alox isoforms (Alox15, Alox12, Alox5) and compared the rates of product formation with those of arachidonic acid oxygenation. Except for ALOX5, the two endocannabinoids were more efficiently oxygenated than arachidonic acid by human ALOX isoforms. Mice Alox15 oxygenated ANA more efficiently than arachidonic acid, but the other mice Alox isoforms exhibited reduced reaction rates for endocannabinoid conversion. Like its human ortholog, mice Alox5 did not oxygenate ANA, but the formation of 5-HETE-containing 2AG derivatives was observed for this enzyme. 1AG and 2AG were similarly effective substrates for human ALOX isoforms. Molecular docking studies, the pattern of oxygenation products, and site-directed mutagenesis experiments suggested a similar substrate alignment of arachidonic acid and endocannabinoids at the active site of ALOX15 orthologs. The product specificity of arachidonic acid oxygenation was conserved for endocannabinoid metabolization, and the triad concept describing the molecular basis for the reaction specificity of ALOX15 orthologs is applicable for endocannabinoid oxygenation. Taken together, these data indicate that, except for ALOX5 orthologs, endocannabinoids are suitable substrates for most mammalian ALOX isoforms.


Assuntos
Endocanabinoides/metabolismo , Lipoxigenase/metabolismo , Oxigênio/metabolismo , Animais , Domínio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Lipoxigenase/química , Camundongos , Simulação de Acoplamento Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA