Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.083
Filtrar
1.
Mol Cell ; 84(9): 1802-1810.e4, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701741

RESUMO

Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.


Assuntos
Amidas , Lisina , Ácidos Fosfóricos , Polifosfatos , Lisina/metabolismo , Lisina/química , Polifosfatos/química , Polifosfatos/metabolismo , Fosforilação , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
2.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747276

RESUMO

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Arginina , Aripiprazol , Varredura Diferencial de Calorimetria , Lisina , Solubilidade , beta-Ciclodextrinas , Aripiprazol/química , Arginina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Lisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Liofilização , Antipsicóticos/química , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Composição de Medicamentos , Química Farmacêutica/métodos
3.
Food Res Int ; 186: 114397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729739

RESUMO

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Assuntos
Glucose , Lisina , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Óleo de Gergelim/química , Glucose/química , Odorantes/análise , Lisina/química , Fenóis/química , Benzodioxóis
4.
Chirality ; 36(5): e23670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716587

RESUMO

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.


Assuntos
Cobre , Lisina , Lisina/química , Lisina/análise , Cobre/química , Cobre/análise , Estereoisomerismo , Dicroísmo Circular/métodos
5.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714021

RESUMO

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Hemólise , Lisina , Testes de Sensibilidade Microbiana , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hemólise/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Proteólise/efeitos dos fármacos , Humanos , Estrutura Molecular
6.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733345

RESUMO

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Histonas , Lisina , Histonas/metabolismo , Histonas/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Lisina/metabolismo , Lisina/química , Acetilação , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Ligação Proteica , Domínios Proteicos , Modelos Moleculares , Sítios de Ligação
7.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
8.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732083

RESUMO

Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.


Assuntos
Dicroísmo Circular , DNA , Lisina , Peptídeos , Fenantridinas , Fenantridinas/química , Lisina/química , Peptídeos/química , DNA/química , DNA/metabolismo , RNA/química , Conformação de Ácido Nucleico
9.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613960

RESUMO

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Assuntos
Aquicultura , Chlorella , Glucose , Microalgas , Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucose/metabolismo , Poluentes Químicos da Água/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradação Ambiental , Redes e Vias Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
10.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584362

RESUMO

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Lisina/química , Proteínas/química , Aminas , Aldeídos
11.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569988

RESUMO

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Assuntos
Aspartato Quinase , Brugia Malayi , Simulação de Dinâmica Molecular , Wolbachia , Brugia Malayi/enzimologia , Brugia Malayi/microbiologia , Regulação Alostérica , Animais , Aspartato Quinase/metabolismo , Aspartato Quinase/genética , Aspartato Quinase/química , Simbiose , Trifosfato de Adenosina/metabolismo , Lisina/química , Lisina/metabolismo
12.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Oxirredução , Transaldolase , Espectroscopia por Absorção de Raios X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Processamento de Proteína Pós-Traducional , Soluções , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química
13.
J Am Chem Soc ; 146(17): 11726-11739, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636166

RESUMO

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.


Assuntos
Domínio Catalítico , Lisina , Prótons , Hidroxilação , Lisina/metabolismo , Lisina/química , Transporte de Elétrons , Tirosina/química , Tirosina/metabolismo , Simulação de Dinâmica Molecular , Estereoisomerismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Humanos , Ferro/química , Ferro/metabolismo
14.
Biomacromolecules ; 25(5): 2838-2851, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38567844

RESUMO

A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.


Assuntos
Arginina , Lisina , Lisina/química , Arginina/química , Concentração de Íons de Hidrogênio , Ureia/química
15.
Methods ; 226: 127-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604414

RESUMO

Protein lysine methylation is a particular type of post translational modification that plays an important role in both histone and non-histone function regulation in proteins. Deregulation caused by lysine methyltransferases has been identified as the cause of several diseases including cancer as well as both mental and developmental disorders. Identifying lysine methylation sites is a critical step in both early diagnosis and drug design. This study proposes a new Machine Learning method called CNN-Meth for predicting lysine methylation sites using a convolutional neural network (CNN). Our model is trained using evolutionary, structural, and physicochemical-based presentation along with binary encoding. Unlike previous studies, instead of extracting handcrafted features, we use CNN to automatically extract features from different presentations of amino acids to avoid information loss. Automated feature extraction from these representations of amino acids as well as CNN as a classifier have never been used for this problem. Our results demonstrate that CNN-Meth can significantly outperform previous methods for predicting methylation sites. It achieves 96.0%, 85.1%, 96.4%, and 0.65 in terms of Accuracy, Sensitivity, Specificity, and Matthew's Correlation Coefficient (MCC), respectively. CNN-Meth and its source code are publicly available at https://github.com/MLBC-lab/CNN-Meth.


Assuntos
Lisina , Redes Neurais de Computação , Lisina/metabolismo , Lisina/química , Metilação , Processamento de Proteína Pós-Traducional , Aprendizado de Máquina , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/química , Biologia Computacional/métodos
16.
Int J Biol Macromol ; 268(Pt 2): 131763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657928

RESUMO

Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.


Assuntos
Proteínas de Bactérias , Lisina , Chaperonas Moleculares , Mycobacterium tuberculosis , Lisina/metabolismo , Lisina/química , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Acetilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Interações Hidrofóbicas e Hidrofílicas , Mutação , Relação Estrutura-Atividade , Chaperoninas
17.
J Org Chem ; 89(10): 6877-6891, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38662908

RESUMO

Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.


Assuntos
Compostos de Amônio , Ânions , Arginina , Guanidina , Lisina , Guanidina/química , Ânions/química , Arginina/química , Compostos de Amônio/química , Lisina/química , Simulação de Dinâmica Molecular
18.
Pestic Biochem Physiol ; 201: 105901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685232

RESUMO

Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.


Assuntos
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efeitos dos fármacos , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Peptaibols/farmacologia , Peptaibols/química , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Solanum lycopersicum/microbiologia
19.
J Am Soc Mass Spectrom ; 35(5): 982-991, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597281

RESUMO

The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.


Assuntos
Espectrometria de Mobilidade Iônica , Ubiquitina , Espectrometria de Mobilidade Iônica/métodos , Ubiquitina/química , Conformação Proteica , Espectrometria de Massas/métodos , Modelos Moleculares , Lisina/química
20.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538915

RESUMO

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Assuntos
Anticódon , Microscopia Crioeletrônica , RNA de Transferência de Isoleucina , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/metabolismo , RNA de Transferência de Isoleucina/genética , Anticódon/química , Anticódon/metabolismo , Ribossomos/metabolismo , Ribossomos/química , Conformação de Ácido Nucleico , Modelos Moleculares , Códon/genética , Lisina/metabolismo , Lisina/química , Lisina/análogos & derivados , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Biossíntese de Proteínas , Nucleosídeos de Pirimidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA