Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Am Chem Soc ; 143(22): 8344-8351, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978401

RESUMO

Bacteriophages have major impact on their microbial hosts and shape entire microbial communities. The majority of these phages are latent and reside as prophages integrated in the genomes of their microbial hosts. A variety of intricate regulatory systems determine the switch from a lysogenic to lytic life style, but so far strategies are lacking to selectively control prophage induction by small molecules. Here we show that Pseudomonas aeruginosa deploys a trigger factor to hijack the lysogenic to lytic switch of a polylysogenic Staphylococcus aureus strain causing the selective production of only one of its prophages. Fractionating extracts of P. aeruginosa identified the phenazine pyocyanin as a highly potent prophage inducer of S. aureus that, in contrast to mitomycin C, displayed prophage selectivity. Mutagenesis and biochemical investigations confirm the existence of a noncanonical mechanism beyond SOS-response that is controlled by the intracellular oxidation level and is prophage-selective. Our results demonstrate that human pathogens can produce metabolites triggering lysogenic to lytic conversion in a prophage-selective manner. We anticipate our discovery to be the starting point of unveiling metabolite-mediated microbe-prophage interactions and laying the foundations for a selective small molecule controlled manipulation of prophage activity. These could be for example applied to control microbial communities by their built-in destruction mechanism in a novel form of phage therapy or for the construction of small molecule-inducible switches in synthetic biology.


Assuntos
Prófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Lisogenia/efeitos dos fármacos , Estrutura Molecular , Prófagos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia , Staphylococcus aureus/efeitos dos fármacos
2.
Viruses ; 13(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799646

RESUMO

Many bacteria carry bacteriophages (bacterial viruses) integrated in their genomes in the form of prophages, which replicate passively alongside their bacterial host. Environmental conditions can lead to prophage induction; the switching from prophage replication to lytic replication, that results in new bacteriophage progeny and the lysis of the bacterial host. Despite their abundance in the gut, little is known about what could be inducing these prophages. We show that several medications, at concentrations predicted in the gut, lead to prophage induction of bacterial isolates from the human gut. We tested five medication classes (non-steroidal anti-inflammatory, chemotherapy, mild analgesic, cardiac, and antibiotic) for antimicrobial activity against eight prophage-carrying human gut bacterial representative isolates in vitro. Seven out of eight bacteria showed signs of growth inhibition in response to at least one medication. All medications led to growth inhibition of at least one bacterial isolate. Prophage induction was confirmed in half of the treatments showing antimicrobial activity. Unlike antibiotics, host-targeted medications led to a species-specific induction of Clostridium beijerinckii, Bacteroides caccae, and to a lesser extent Bacteroides eggerthii. These results show how common medication consumption can lead to phage-mediated effects, which in turn would alter the human gut microbiome through increased prophage induction.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Lisogenia/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Ativação Viral/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bacteriófagos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
3.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796077

RESUMO

Epstein-Barr virus (EBV) is one of nine human herpesviruses that persist latently to establish permanent residence in their hosts. Periodic activation into the lytic/replicative phase allows such viruses to propagate and spread, but can also cause disease in the host. This lytic phase is also essential for EBV to cause infectious mononucleosis and cancers, including B lymphocyte-derived Burkitt lymphoma and immunocompromise-associated lymphoproliferative diseases/lymphomas as well as epithelial cell-derived nasopharyngeal cell carcinoma. In the absence of anti-EBV agents, however, therapeutic options for EBV-related diseases are limited. In earlier work, we discovered that through the activities of the viral protein kinase conserved across herpesviruses and two cellular proteins, ATM and KAP1, a lytic cycle amplification loop is established, and disruption of this loop disables the EBV lytic cascade. We therefore devised a high-throughput screening assay, screened a small-molecule-compound library, and identified 17 candidates that impair the release of lytically replicated EBV. The identified compounds will (i) serve as lead compounds or may be modified to inhibit EBV and potentially other herpesviruses, and (ii) be developed into anticancer agents, as functions of KAP1 and ATM are tightly linked to cancer. Importantly, our screening strategy may also be used to screen additional compound libraries for antiherpesviral and anticancer drugs.IMPORTANCE Epstein-Barr virus, which is nearly ubiquitous in humans, is causal to infectious mononucleosis, chronic active EBV infection, and lymphoid and epithelial cancers. However, EBV-specific antiviral agents are not yet available. To aid in the identification of compounds that may be developed as antivirals, we pursued a mechanism-based approach. Since many of these diseases rely on EBV's lytic phase, we developed a high-throughput assay that is able to measure a key step that is essential for successful completion of EBV's lytic cascade. We used this assay to screen a library of small-molecule compounds and identified inhibitors that may be pursued for their anti-EBV and possibly even antiherpesviral potential, as this key mechanism appears to be common to several human herpesviruses. Given the prominent role of this mechanism in both herpesvirus biology and cancer, our screening assay may be used as a platform to identify both antiherpesviral and anticancer drugs.


Assuntos
Antivirais/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Herpesvirus Humano 4/efeitos dos fármacos , Proteínas Quinases/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transativadores/genética , Proteína 28 com Motivo Tripartido/genética , Antivirais/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/virologia , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/metabolismo , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Lisogenia/efeitos dos fármacos , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Transativadores/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121308

RESUMO

The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN-cI-), at high multiplicities of 50 or more, it forms polylysogens that contain 20-30 copies of the λN-cI- genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent "conversion" to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN-cI- genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies.


Assuntos
Bacteriófago lambda/crescimento & desenvolvimento , Lisogenia/fisiologia , Prófagos/crescimento & desenvolvimento , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dactinomicina/farmacologia , Escherichia coli/virologia , Genes Virais , Lisogenia/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ácido Nalidíxico/farmacologia , Peptidoglicano/metabolismo , Prófagos/efeitos dos fármacos , Prófagos/ultraestrutura , Proteínas Virais/metabolismo
5.
Nat Microbiol ; 3(11): 1285-1294, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323253

RESUMO

Communication is vital for all organisms including microorganisms, which is clearly demonstrated by the bacterial quorum-sensing system. However, the molecular mechanisms underlying communication among viruses (phages) via the quorum-sensing-like 'arbitrium' system remain unclear. Viral or host densities are known to be related to an increased prevalence of lysogeny; however, how the switch from the lytic to the lysogenic pathway occurs is unknown. Thus, we sought to reveal mechanisms of communication among viruses and determine the lysogenic dynamics involved. Structural and functional analyses of the phage-derived SAIRGA and GMPRGA peptides and their corresponding receptors, phAimR and spAimR, indicated that SAIRGA directs the lysis-lysogeny decision of phi3T by modulating conformational changes in phAimR, whereas GMPRGA regulates the lysis-lysogeny pathway by stabilizing spAimR in the dimeric state. Although temperate viruses are thought to share a similar lytic-lysogenic cycle switch model, our study suggests the existence of alternative strain-specific mechanisms that regulate the lysis-lysogeny decision. Collectively, these findings provide insights into the molecular mechanisms underlying communication among viruses, offering theoretical applications for the treatment of infectious viral diseases.


Assuntos
Fagos Bacilares/fisiologia , Bacteriólise , Lisogenia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Fagos Bacilares/efeitos dos fármacos , Bacillus subtilis/citologia , Bacillus subtilis/virologia , Bacteriólise/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Lisogenia/efeitos dos fármacos , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade , Proteínas Virais/química
6.
Nat Microbiol ; 3(11): 1266-1273, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224798

RESUMO

A bacteriophage can replicate and release virions from a host cell in the lytic cycle or switch to a lysogenic process in which the phage integrates itself into the host genome as a prophage. In Bacillus cells, some types of phages employ the arbitrium communication system, which contains an arbitrium hexapeptide, the cellular receptor AimR and the lysogenic negative regulator AimX. This system controls the decision between the lytic and lysogenic cycles. However, both the mechanism of molecular recognition between the arbitrium peptide and AimR and how downstream gene expression is regulated remain unknown. Here, we report crystal structures for AimR from the SPbeta phage in the apo form and the arbitrium peptide-bound form at 2.20 Å and 1.92 Å, respectively. With or without the peptide, AimR dimerizes through the C-terminal capping helix. AimR assembles a superhelical fold and accommodates the peptide encircled by its tetratricopeptide repeats, which is reminiscent of RRNPP family members from the quorum-sensing system. In the absence of the arbitrium peptide, AimR targets the upstream sequence of the aimX gene; its DNA binding activity is prevented following peptide binding. In summary, our findings provide a structural basis for peptide recognition in the phage lysis-lysogeny decision communication system.


Assuntos
Fagos Bacilares/fisiologia , Bacteriólise , Lisogenia , Peptídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Fagos Bacilares/efeitos dos fármacos , Bacillus subtilis/citologia , Bacillus subtilis/virologia , Bacteriólise/efeitos dos fármacos , Cristalografia por Raios X , Regulação Viral da Expressão Gênica , Lisogenia/efeitos dos fármacos , Mutação , Peptídeos/farmacologia , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Proteínas Virais/genética
7.
PLoS Pathog ; 14(1): e1006769, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309427

RESUMO

Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2'-deoxyuridine (EdU) labelling of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication.


Assuntos
Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Células Cultivadas , Química Click , Deleção de Genes , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/patologia , Corpos de Inclusão Viral/virologia , Cinética , Lisogenia/efeitos dos fármacos , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína da Leucemia Promielocítica/antagonistas & inibidores , Proteína da Leucemia Promielocítica/genética , Interferência de RNA , Inibidores da Transcriptase Reversa/farmacologia , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
J Biol Chem ; 293(8): 2801-2814, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29305424

RESUMO

The stress-induced unfolded protein response (UPR) in the endoplasmic reticulum (ER) involves various signaling cross-talks and controls cell fate. B-cell receptor (BCR) signaling, which can trigger UPR, induces gammaherpesvirus lytic replication and serves as a physiological mechanism for gammaherpesvirus reactivation in vivo However, how the UPR regulates BCR-mediated gammaherpesvirus infection is unknown. Here, we demonstrate that the ER stressors tunicamycin and thapsigargin inhibit BCR-mediated murine gammaherpesvirus 68 (MHV68) lytic replication by inducing expression of the UPR mediator Bip and blocking activation of Akt, ERK, and JNK. Both Bip and the downstream transcription factor ATF4 inhibited BCR-mediated MHV68 lytic gene expression, whereas UPR-induced C/EBP homologous protein (CHOP) was required for and promoted BCR-mediated MHV68 lytic replication by suppressing upstream Bip and ATF4 expression. Bip knockout was sufficient to rescue BCR-mediated MHV68 lytic gene expression in CHOP knockout cells, and this rescue was blocked by ectopic ATF4 expression. Furthermore, ATF4 directly inhibited promoter activity of the MHV68 lytic switch transactivator RTA. Altogether, we show that ER stress-induced CHOP inhibits Bip and ATF4 expression and that ATF4, in turn, plays a critical role in CHOP-mediated regulation of BCR-controlled MHV68 lytic replication. We conclude that ER stress-mediated UPR and BCR signaling pathways are interconnected and form a complex network to regulate the gammaherpesvirus infection cycle.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Linfócitos B/virologia , Estresse do Retículo Endoplasmático , Gammaherpesvirinae/fisiologia , Proteínas de Choque Térmico/metabolismo , Receptores de Antígenos de Linfócitos B/agonistas , Fator de Transcrição CHOP/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Animais , Antivirais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Transformada , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Gammaherpesvirinae/efeitos dos fármacos , Gammaherpesvirinae/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Lisogenia/efeitos dos fármacos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia , Fator de Transcrição CHOP/antagonistas & inibidores , Fator de Transcrição CHOP/genética , Tunicamicina/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Microb Biotechnol ; 11(6): 1112-1120, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29327434

RESUMO

Bacteriophages, that is viruses that infect bacteria, either lyse bacteria directly or integrate their genome into the bacterial genome as so-called prophages, where they remain at a silent state. Both phages and bacteria are able to survive in this state. However, prophages can be reactivated with the introduction of chemicals, followed by the release of a high number of phage particles, which could infect other bacteria, thus harming ecosystems by a viral bloom. The basics for a fast, automatable analytical method for the detection of prophage-activating chemicals are developed and successfully tested here. The method exploits the differences in metabolic heat produced by Escherichia coli with (λ+) and without the lambda prophages (λ-). Since the metabolic heat primarily reflects opposing effects (i.e. the reduction of heat-producing cells by lysis and enhanced heat production to deliver the energetic costs for the synthesis of phages), a systematic analysis of the influence of the different conditions (experimentally and in silico) was performed and revealed anoxic conditions to be best suited. The main advantages of the suggested monitoring method are not only the possibility of obtaining fast results (after only few hours), but also the option for automation, the low workload (requires only few minutes) and the suitability of using commercially available instruments. The future challenge following this proof of principle is the development of thermal transducers which allow for the electronic subtraction of the λ+ from the λ- signal.


Assuntos
Bacteriófago lambda/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos Orgânicos/farmacologia , Prófagos/efeitos dos fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Lisogenia/efeitos dos fármacos , Prófagos/genética , Prófagos/fisiologia
10.
PLoS One ; 12(8): e0183200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800363

RESUMO

Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed.


Assuntos
Bacteriófagos/efeitos dos fármacos , Sulfato de Cobre/farmacologia , Lisogenia/efeitos dos fármacos , Pectobacterium/virologia , Bacteriófagos/fisiologia , Lisogenia/fisiologia , Pectobacterium/crescimento & desenvolvimento , Pectobacterium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Tubérculos/efeitos dos fármacos , Tubérculos/microbiologia , Tubérculos/virologia , Solo/química , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Virulência
11.
Sci Rep ; 7: 40424, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106081

RESUMO

How temperate bacteriophages play a role in microbial infection and disease progression is not fully understood. They do this in part by carrying genes that promote positive evolutionary selection for the lysogen. Using Biolog phenotype microarrays and comparative metabolite profiling we demonstrate the impact of the well-characterised Shiga toxin-prophage ϕ24B on its Escherichia coli host MC1061. As a lysogen, the prophage alters the bacterial physiology by increasing the rates of respiration and cell proliferation. This is the first reported study detailing phage-mediated control of the E. coli biotin and fatty acid synthesis that is rate limiting to cell growth. Through ϕ24B conversion the lysogen also gains increased antimicrobial tolerance to chloroxylenol and 8-hydroxyquinoline. Distinct metabolite profiles discriminate between MC1061 and the ϕ24B lysogen in standard culture, and when treated with 2 antimicrobials. This is also the first reported use of metabolite profiling to characterise the physiological impact of lysogeny under antimicrobial pressure. We propose that temperate phages do not need to carry antimicrobial resistance genes to play a significant role in tolerance to antimicrobials.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/metabolismo , Toxina Shiga/metabolismo , Área Sob a Curva , Proliferação de Células/efeitos dos fármacos , Análise Discriminante , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Resistência a Canamicina/efeitos dos fármacos , Lisogenia/efeitos dos fármacos , Metabolômica , Análise Multivariada , Pressão Osmótica , Oxiquinolina/farmacologia , Xilenos/farmacologia
12.
Nature ; 541(7638): 488-493, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28099413

RESUMO

Temperate viruses can become dormant in their host cells, a process called lysogeny. In every infection, such viruses decide between the lytic and the lysogenic cycles, that is, whether to replicate and lyse their host or to lysogenize and keep the host viable. Here we show that viruses (phages) of the SPbeta group use a small-molecule communication system to coordinate lysis-lysogeny decisions. During infection of its Bacillus host cell, the phage produces a six amino-acids-long communication peptide that is released into the medium. In subsequent infections, progeny phages measure the concentration of this peptide and lysogenize if the concentration is sufficiently high. We found that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogeny decisions. We term this communication system the 'arbitrium' system, and further show that it is encoded by three phage genes: aimP, which produces the peptide; aimR, the intracellular peptide receptor; and aimX, a negative regulator of lysogeny. The arbitrium system enables a descendant phage to 'communicate' with its predecessors, that is, to estimate the amount of recent previous infections and hence decide whether to employ the lytic or lysogenic cycle.


Assuntos
Bacteriólise , Bacteriófagos/fisiologia , Lisogenia , Sequência de Aminoácidos , Bacillus/citologia , Bacillus/virologia , Bacteriólise/efeitos dos fármacos , Bacteriófagos/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , DNA Viral/metabolismo , Lisogenia/efeitos dos fármacos , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Multimerização Proteica , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
13.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062463

RESUMO

Streptococcus salivarius is an abundant isolate of the oral cavity. The genome of S. salivarius 57.I consists of a 2-Mb chromosome and a 40,758-bp circular molecule, designated YMC-2011. Annotation of YMC-2011 revealed 55 open reading frames, most of them associated with phage production, although plaque formation is not observed in S. salivarius 57.I after lytic induction using mitomycin C. Results from Southern hybridization and quantitative real-time PCR confirmed that YMC-2011 exists extrachromosomally, with an estimated copy number of 3 to 4. Phage particles were isolated from the supernatant of mitomycin C-treated S. salivarius 57.I cultures, and transmission electron microscopic examination indicated that YMC-2011 belongs to the Siphoviridae family. Phylogenetic analysis suggests that phage YMC-2011 and the cos-type phages of Streptococcus thermophilus originated from a common ancestor. An extended -10 element (p L ) and a σ70-like promoter (p R ) were mapped 5' to Ssal_phage00013 (encoding a CI-like repressor) and Ssal_phage00014 (encoding a hypothetical protein), respectively, using 5' rapid amplification of cDNA ends, indicating that YMC-2011 transcribes at least two mRNAs in opposite orientations. Studies using promoter-chloramphenicol acetyltransferase reporter gene fusions revealed that p R , but not p L , was sensitive to mitomycin C induction, suggesting that the switch from lysogenic growth to lytic growth was controlled mainly by the activity of these two promoters. In conclusion, a lysogenic state is maintained in S. salivarius 57.I, presumably by the repression of genes encoding proteins for lytic growth.IMPORTANCE The movement of mobile genetic elements such as bacteriophages and the establishment of lysogens may have profound effects on the balance of microbial ecology where lysogenic bacteria reside. The discovery of phage YMC-2011 from Streptococcus salivarius 57.I suggests that YMC-2011 and Streptococcus thermophilus-infecting phages share an ancestor. Although S. salivarius and S. thermophilus are close phylogenetically, S. salivarius is a natural inhabitant of the human mouth, whereas S. thermophilus is commonly found in the mammary mucosa of bovine species. Thus, the identification of YMC-2011 suggests that horizontal gene transfer via phage infection could take place between species from different ecological niches.


Assuntos
Lisogenia/genética , Mitomicina/farmacologia , Fagos de Streptococcus/genética , Streptococcus salivarius/virologia , Ativação Viral/efeitos dos fármacos , Sequência de Bases , DNA Viral/genética , Lisogenia/efeitos dos fármacos , Boca/microbiologia , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Fagos de Streptococcus/classificação , Streptococcus salivarius/genética , Streptococcus salivarius/isolamento & purificação
14.
Oxid Med Cell Longev ; 2016: 8453135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798427

RESUMO

Previous studies indicated that these genetic elements could be involved in the regulation of lysogenization and prophage induction processes. The effects were dramatic in Shiga toxin-converting phage Φ24(B) after treatment with oxidative stress-inducing agent, hydrogen peroxide, while they were less pronounced in bacteriophage λ and in both phages irradiated with UV. The hydrogen peroxide-caused prophage induction was found to be RecA-dependent. Importantly, in hydrogen peroxide-treated E. coli cells lysogenic for either λ or Φ24(B), deletion of the exo-xis region resulted in a significant decrease in the levels of expression of the S.O.S. regulon genes. Moreover, under these conditions, a dramatic decrease in the levels of expression of phage genes crucial for lytic development (particularly xis, exo, N, cro, O, Q, and R) could be observed in Φ24(B)-, but not in λ-bearing cells. We conclude that genes located in the exo-xis region are necessary for efficient expression of both host S.O.S regulon in lysogenic bacteria and regulatory genes of Shiga toxin-converting bacteriophage Φ24(B).


Assuntos
Estresse Oxidativo/genética , Prófagos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Toxina Shiga/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/metabolismo , Bacteriófago lambda/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Lisogenia/efeitos dos fármacos , Lisogenia/efeitos da radiação , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Reação em Cadeia da Polimerase , Prófagos/efeitos dos fármacos , Prófagos/efeitos da radiação , Recombinases Rec A/metabolismo , Regulon/genética , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Alinhamento de Sequência , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Raios Ultravioleta , Ativação Viral/efeitos dos fármacos , Ativação Viral/efeitos da radiação
15.
FEMS Microbiol Lett ; 363(3)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26705574

RESUMO

We describe a genetic ß-galactoside reporter system using a disk diffusion assay on MacConkey Lactose agar petri plates to monitor maintenance of the bacteriophage λ prophage state and viral induction in Escherichia coli K-12. Evidence is presented that the phage λ major lytic promoters, pL and pR, are activated when cells containing the reporters are exposed to the energy poison carbonyl cyanide m-chlorophenyl hydrazine, CCCP. This uncoupler of oxidative phosphorylation inhibits ATP synthesis by collapsing the proton motive force. Expression of the λ lytic promoters in response to CCCP requires host RecA function and an autocleavable CI repressor, as does SOS induction of the λ prophage that occurs by a DNA damage-dependent pathway. λ Cro function is required for CCCP-mediated activation of the λ lytic promoters. CCCP does not induce an sfi-lacZ SOS reporter.


Assuntos
Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/fisiologia , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/virologia , Lisogenia/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Fusão Gênica Artificial , Genes Reporter , Regiões Promotoras Genéticas , Força Próton-Motriz/efeitos dos fármacos , beta-Galactosidase/análise , beta-Galactosidase/genética
16.
PLoS One ; 10(4): e0123874, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853566

RESUMO

Halovirus is a major force that affects the evolution of extreme halophiles and the biogeochemistry of hypersaline environments. However, until now, the systematic studies on the halovirus ecology and the effects of salt concentration on virus-host systems are lacking. To provide more valuable information for understanding ecological strategies of a virus-host system in the hypersaline ecosystem, we studied the interaction between halovirus SNJ1 and its host Natrinema sp.J7-2 under various NaCl concentrations. We found that the adsorption rate and lytic rate increased with salt concentration, demonstrating that a higher salt concentration promoted viral adsorption and proliferation. Contrary to the lytic rate, the lysogenic rate decreased as the salt concentration increased. Our results also demonstrated that cells incubated at a high salt concentration prior to infection increased the ability of the virus to adsorb and lyse its host cells; therefore, the physiological status of host cells also affected the virus-host interaction. In conclusion, SNJ1 acted as a predator, lysing host cells and releasing progeny viruses in hypersaline environments; in low salt environments, viruses lysogenized host cells to escape the damage from low salinity.


Assuntos
DNA Viral/genética , Euryarchaeota/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Vírus não Classificados/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Viral/metabolismo , Ecossistema , Euryarchaeota/ultraestrutura , Euryarchaeota/virologia , Lisogenia/efeitos dos fármacos , Salinidade , Vírus não Classificados/crescimento & desenvolvimento , Vírus não Classificados/patogenicidade
17.
PLoS One ; 9(4): e94358, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718595

RESUMO

Antibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between antibiotic consumption and the cost that resistance imposes to bacterial fitness. In addition, pneumococcal prophages could play an important role. Prophage induction by fluoroquinolones was confirmed in 4 clinical isolates by using Southern blot hybridization. Clinical isolates (105 fluoroquinolone-resistant and 160 fluoroquinolone-susceptible) were tested for lysogeny by using a PCR assay and functional prophage carriage was studied by mitomycin C induction. Fluoroquinolone-resistant strains harbored fewer inducible prophages (17/43) than fluoroquinolone-susceptible strains (49/70) (P = 0.0018). In addition, isolates of clones associated with fluoroquinolone resistance [CC156 (3/25); CC63 (2/20), and CC81 (1/19)], had lower frequency of functional prophages than isolates of clones with low incidence of fluoroquinolone resistance [CC30 (4/21), CC230 (5/20), CC62 (9/21), and CC180 (21/30)]. Likewise, persistent strains from patients with chronic respiratory diseases subjected to fluoroquinolone treatment had a low frequency of inducible prophages (1/11). Development of ciprofloxacin resistance was tested with two isogenic strains, one lysogenic and the other non-lysogenic: emergence of resistance was only observed in the non-lysogenic strain. These results are compatible with the lysis of lysogenic isolates receiving fluoroquinolones before the development of resistance and explain the inverse relation between presence of inducible prophages and fluoroquinolone-resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Prófagos/fisiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/virologia , Ativação Viral/efeitos dos fármacos , Southern Blotting , Doença Crônica , Ciprofloxacina/farmacologia , Progressão da Doença , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lisogenia/efeitos dos fármacos , Mitomicina/farmacologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Reação em Cadeia da Polimerase , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação
18.
Appl Environ Microbiol ; 76(3): 829-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20008174

RESUMO

Eleven Bacillus isolates from the surface and subsurface waters of the Gulf of Mexico were examined for their capacity to sporulate and harbor prophages. Occurrence of sporulation in each isolate was assessed through decoyinine induction, and putative lysogens were identified by prophage induction by mitomycin C treatment. No obvious correlation between ability to sporulate and prophage induction was found. Four strains that contained inducible virus-like particles (VLPs) were shown to sporulate. Four strains did not produce spores upon induction by decoyinine but contained inducible VLPs. Two of the strains did not produce virus-like particles or sporulate significantly upon induction. Isolate B14905 had a high level of virus-like particle production and a high occurrence of sporulation and was further examined by genomic sequencing in an attempt to shed light on the relationship between sporulation and lysogeny. In silico analysis of the B14905 genome revealed four prophage-like regions, one of which was independently sequenced from a mitomycin C-induced lysate. Based on PCR and transmission electron microscopy (TEM) analysis of an induced phage lysate, one is a noninducible phage remnant, one may be a defective phage-like bacteriocin, and two were inducible prophages. One of the inducible phages contained four putative transcriptional regulators, one of which was a SinR-like regulator that may be involved in the regulation of host sporulation. Isolates that both possess the capacity to sporulate and contain temperate phage may be well adapted for survival in the oligotrophic ocean.


Assuntos
Fagos Bacilares/genética , Bacillus/fisiologia , Lisogenia , Água do Mar/microbiologia , Bacillus/genética , Bacillus/virologia , Fagos Bacilares/efeitos dos fármacos , Fagos Bacilares/fisiologia , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Sequência de Bases , DNA Viral/genética , Genoma Bacteriano , Genoma Viral , Integrases/genética , Lisogenia/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitomicina/farmacologia , Dados de Sequência Molecular , Oceanos e Mares , Prófagos/efeitos dos fármacos , Prófagos/genética , Prófagos/fisiologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética , Proteínas Virais/genética , Ativação Viral/efeitos dos fármacos , Ativação Viral/genética , Ativação Viral/fisiologia , Integração Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
19.
Oral Microbiol Immunol ; 24(4): 278-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19572888

RESUMO

INTRODUCTION: Bacterial viruses play crucial roles in the pathogenesis of many systemic diseases. They are known to inhabit the oral cavity, both as free virions and as prophages in lysogenic bacterial strains; however, there has been no report of bacteriophages in endodontic infections. In this study, we sought to detect, isolate, and describe temperate bacteriophages harbored by Enterococcus faecalis strains isolated from endodontic infections. METHODS: Ten E. faecalis strains were isolated from root canals of teeth undergoing retreatment following unsuccessful endodontic therapy. Mitomycin C was used to induce any prophages present in the bacterial isolates. The induced phages were purified and examined using electron microscopy. The DNA extracted from one of the phage isolates was subjected to restriction endonuclease digestion and agarose electrophoresis analysis. RESULTS: Lysogeny was demonstrated in 4 of the 10 E. faecalis strains. Three of the lysogenic strains yielded phages exhibiting a Siphoviridae morphology, with long, non-contractile tails 130 nm in length, and spherical/icosahedral heads 41 nm in diameter. The virus induced from the fourth lysogenic E. faecalis strain had a contractile tail characteristic of Myoviridae. Restriction endonuclease analysis of NsiI and NdeI DNA fragments from one of the Siphoviridae phage isolates (phage phiEf11) indicated a genome size of approximately 41 kbp. CONCLUSION: This is the first report of lysogenic bacteria and their inducible viruses in infected root canals.


Assuntos
Cavidade Pulpar/virologia , Enterococcus faecalis/virologia , Periodontite Periapical/virologia , Siphoviridae/isolamento & purificação , Dente não Vital/virologia , Bacteriófagos/fisiologia , DNA Viral/análise , Falha de Restauração Dentária , Enterococcus faecalis/efeitos dos fármacos , Humanos , Lisogenia/efeitos dos fármacos , Mitomicina/farmacologia , Myoviridae/isolamento & purificação , Retratamento , Virologia/métodos , Ativação Viral
20.
Proc Natl Acad Sci U S A ; 106(4): 1234-8, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19141630

RESUMO

A surprising example of interspecies competition is the production by certain bacteria of hydrogen peroxide at concentrations that are lethal for others. A case in point is the displacement of Staphylococcus aureus by Streptococcus pneumoniae in the nasopharynx, which is of considerable clinical significance. How it is accomplished, however, has been a great mystery, because H(2)O(2) is a very well known disinfectant whose lethality is largely due to the production of hyperoxides through the abiological Fenton reaction. In this report, we have solved the mystery by showing that H(2)O(2) at the concentrations typically produced by pneumococci kills lysogenic but not nonlysogenic staphylococci by inducing the SOS response. The SOS response, a stress response to DNA damage, not only invokes DNA repair mechanisms but also induces resident prophages, and the resulting lysis is responsible for H(2)O(2) lethality. Because the vast majority of S. aureus strains are lysogenic, the production of H(2)O(2) is a very widely effective antistaphylococcal strategy. Pneumococci, however, which are also commonly lysogenic and undergo SOS induction in response to DNA-damaging agents such as mitomycin C, are not SOS-induced on exposure to H(2)O(2). This is apparently because they are resistant to the DNA-damaging effects of the Fenton reaction. The production of an SOS-inducing signal to activate prophages in neighboring organisms is thus a rather unique competitive strategy, which we suggest may be in widespread use for bacterial interference. However, this strategy has as a by-product the release of active phage, which can potentially spread mobile genetic elements carrying virulence genes.


Assuntos
Bacteriófagos/fisiologia , Viabilidade Microbiana , Staphylococcus aureus/citologia , Staphylococcus aureus/virologia , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/virologia , Ativação Viral , Antibacterianos/farmacologia , Antígenos Virais/metabolismo , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/imunologia , Catalase/metabolismo , Técnicas de Cocultura , Peróxido de Hidrogênio/farmacologia , Lisogenia/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA