Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728074

RESUMO

A novel plant-beneficial bacterium strain, designated as JGH33T, which inhibited Peronophythora litchii sporangia germination, was isolated on Reasoner's 2A medium from a litchi rhizosphere soil sample collected in Gaozhou City, Guangdong Province, PR China. Cells of strain JGH33T were Gram-stain-positive, aerobic, non-motile, bent rods. The strain grew optimally at 30-37 °C and pH 6.0-8.0. Sequence similarity analysis based on 16S rRNA genes indicated that strain JGH33T exhibited highest sequence similarity to Sinomonas albida LC13T (99.2 %). The genomic DNA G+C content of the isolate was 69.1 mol%. The genome of JGH33T was 4.7 Mbp in size with the average nucleotide identity value of 83.45 % to the most related reference strains, which is lower than the species delineation threshold of 95 %. The digital DNA-DNA hybridization of the isolate resulted in a relatedness value of 24.9 % with its closest neighbour. The predominant respiratory quinone of JGH33T was MK-9(H2). The major fatty acids were C15 : 0 anteiso (43.4 %), C16 : 0 iso (19.1 %) and C17 : 0 anteiso (19.3 %), and the featured component was C18 : 3 ω6c (1.01 %). The polar lipid composition of strain JGH33T included diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, phosphatidylinositol and glycolipids. On the basis of polyphasic taxonomy analyses data, strain JGH33T represents a novel species of the genus Sinomonas, for which the name Sinomonas terricola sp. nov. is proposed, with JGH33T (=JCM 35868T=GDMCC 1.3730T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Litchi , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , China , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Litchi/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análise
2.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1102-1119, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658152

RESUMO

HSP70 protein, as an important member of the heat shock protein (HSP) family, plays an important role in plant growth, development, and response to biotic and abiotic stresses. In order to explore the role of HSP70 gene family members in Litchi chinensis under low temperature, high temperature, drought, and salt stress, bioinformatics methods were used to identify the HSP70 gene family members within the entire L. chinensis genome. The expression of these genes under various abiotic stresses was then detected using quantitative real-time PCR (qRT-PCR). The results showed that the LcHSP70 gene family consisted of 18 members, which were unevenly distributed across ten L. chinensis chromosomes. The LcHSP70 protein contained 479-851 amino acids, with isoelectric points ranging from 5.07 to 6.95, and molecular weights from 52.44 kDa to 94.07 kDa. The predicted subcellular localization showed that LcHSP70 protein was present in the nucleus, cytoplasm, endoplasmic reticulum, mitochondria, and chloroplast. Phylogenetic analysis divided the LcHSP70 proteins into five subgroups, namely Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅵ. The promoter regions of the LcHSP70 genes contained various cis-acting elements related to plant growth, development, hormone response, and stress response. Moreover, the expression of LcHSP70 genes displayed distint tissue-specific expression level, categorized into universal expression and specific expression. From the selected 6 LcHSP70 genes (i.e., LcHSP70-1, LcHSP70-5, LcHSP70-10, LcHSP70-14, LcHSP70-16, and LcHSP70-18), their relative expression levels were assessed under different abiotic stresses using qRT-PCR. The results indicated that the gene family members exhibited diverse responses to low temperature, high temperature, drought, and salt stress, with significant variations in their expression levels across different time periods. These results provide a foundation for further exploration of the function of the LcHSP70 gene family.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70 , Litchi , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Litchi/genética , Litchi/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Família Multigênica , Estresse Salino/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
4.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675680

RESUMO

This study presents a method for analyzing dimethomorph residues in lychee using QuEChERS extraction and HPLC-MS/MS. The validation parameters for this method, which include accuracy, precision, linearity, and recovery, indicate that it meets standard validation requirements. Following first-order kinetics, the dissipation dynamic of dimethomorph in lychee was determined to range from 6.4 to 9.2 days. Analysis of terminal residues revealed that residues in whole lychee were substantially greater than those in the pulp, indicating that dimethomorph residues are predominantly concentrated in the peel. When applied twice and thrice at two dosage levels with pre-harvest intervals (PHIs) of 5, 7, and 10 days, the terminal residues in whole lychee ranged from 0.092 to 1.99 mg/kg. The terminal residues of the pulp ranged from 0.01 to 0.18 mg/kg, with the residue ratio of whole lychee to pulp consistently exceeding one. The risk quotient (RQ) for dimethomorph, even at the recommended dosage, was less than one, indicating that the potential for damage was negligible. This study contributes to the establishment of maximum residue limits (MRLs) in China by providing essential information on the safe application of dimethomorph in lychee orchards.


Assuntos
Litchi , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Litchi/química , Morfolinas/análise , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise
5.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606579

RESUMO

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Assuntos
Litchi , Extratos Vegetais , Ácido gama-Aminobutírico , Animais , Camundongos , Litchi/química , Extratos Vegetais/farmacologia , Masculino , Ácido gama-Aminobutírico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas de Plantas/farmacologia , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Frutas/química , Aspartato Aminotransferases
6.
Carbohydr Polym ; 333: 121968, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494223

RESUMO

In this study, an edible composite film with pH-responsive release was prepared by the formation of Schiff-base imine bonds between chitosan (CS) and oxidized fucoidan (CS-FU) and encapsulating cinnamaldehyde (CA). Fourier-transform infrared, 1H nuclear magnetic resonance, X-ray photoelectron spectroscopy and gel permeation chromatography confirmed the formation of CS-FU. The result showed that, oxidation degree of FU, degrees of substitution, average molecular weight and yield of CS-FU were 25.57 %, 10.48 %, 23.3094 kDa and 45.63 ± 0.64 %, respectively. Scanning electron microscopy revealed that CA was encapsulated within the CS-FU matrix. Increasing the CA content could improve the mechanical properties and ultraviolet and visible-light resistances of the CS-FU coating films but enhance their water vapor permeabilities. The release of CA increased as the pH decreased, and the antibacterial rate at pH 5 was 2.3-fold higher than that at pH 7, indicating good pH-responsive release and antibacterial properties in mildly acidic environments. Owing to their excellent properties, the CA/CS-FU-0.1 coating films maintained the appearance and quality indices of litchis for at least eight days. Hence, multifunctional composite coating films are prospective eco-friendly and intelligently responsive controlled-release packaging materials for fruit preservation.


Assuntos
Acroleína/análogos & derivados , Quitosana , Litchi , Polissacarídeos , Frutas/química , Quitosana/química , Estudos Prospectivos , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Concentração de Íons de Hidrogênio
7.
Artigo em Inglês | MEDLINE | ID: mdl-38431089

RESUMO

The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and ß-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.


Assuntos
Antioxidantes , Litchi , Animais , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Litchi/metabolismo , Farinha , Estresse Oxidativo , Dieta , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Carboidratos/farmacologia , Glucose/farmacologia
8.
Food Chem ; 445: 138734, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401310

RESUMO

In this study, litchi polysaccharides were obtained from unfermented or fermented pulp by Lactobacillus fermentum (denoted as LP and LPF, respectively). The differences between LP and LPF in the colonic fermentation characteristics and modulatory of gut microbiota growth and metabolism were investigated with an in vitro fecal fermentation model. Results revealed that the strategies of gut bacteria metabolizing LP and LPF were different and LPF with lower molecular weight (Mw) was readily utilized by bacteria. The monosaccharide utilization sequence of each polysaccharide was Ara > Gla > GalA > GlcA ≈ Glu ≈ Man. Moreover, LPF promoted stronger proliferation of Bifidobacterium, Megamonas, Prevotella, and Bacteroides and higher SCFAs production (especially acetic and butyric acids) than LP. Correlation analysis further revealed that Mw could represent an essential structural feature of polysaccharides associated with its microbiota-regulating effect. Overall, Lactobacillus fermentation pre-treatment of litchi pulp promoted the fermentation characteristics and prebiotic activities of its polysaccharide.


Assuntos
Microbioma Gastrointestinal , Litchi , Microbiota , Masculino , Humanos , Litchi/química , Lactobacillus/metabolismo , Fermentação , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo
9.
Genomics ; 116(2): 110804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307485

RESUMO

Litchi (Litchi chinensis Sonn.) is a valuable subtropical fruit tree with high-quality fruit. However, its economic benefits and sustainable development are restrained by a number of challenges. One major challenge is the lack of extremely early and late maturing high-quality varieties due to limited availability of varieties suitable for commercial cultivation and outdated breeding methods, resulting in an imbalanced supply and low price of litchi. Flowering time is a crucial genetic factor influencing the maturation period of litchi. Our previous research has highlighted the pivotal role of the LcFT1 gene in regulating the flowering time of litchi and identified a gene associated with LcFT1 (named as LcSOC1) based on RNA-Seq and weight gene co-expression network (WGCNA) analysis. This study further investigated the function of LcSOC1. Subcellular localization analysis revealed that LcSOC1 is primarily localized in the nucleus, where it acts as a transcription factor. LcSOC1 overexpression in Nicotiana tabacum and Arabidopsis thaliana resulted in significant early flowering. Furthermore, LcSOC1 was found to be expressed in various tissues, with the highest expression in mature leaves. Analysis of spatial and temporal expression patterns of LcSOC1 in litchi varieties with different flowering time under low temperature treatment and across an annual cycle demonstrated that LcSOC1 is responsive to low temperature induction. Interestingly, early maturing varieties exhibited higher sensitivity to low temperature, with significantly premature induction of LcSOC1 expression relative to late maturing varieties. Activation of LcSOC1 triggered the transition of litchi into the flowering phase. These findings demonstrate that LcSOC1 plays a pivotal role in regulating the flowering process and determining the flowering time in litchi. Overall, this study provides theoretical guidance and important target genes for molecular breeding to regulate litchi production period.


Assuntos
Litchi , Litchi/genética , Litchi/metabolismo , Frutas/genética , Melhoramento Vegetal , Folhas de Planta/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339030

RESUMO

The MADS-box protein is an important transcription factor in plants and plays an important role in regulating the plant abiotic stress response. In this study, a total of 94 MADS-box genes were predicted in the litchi genome, and these genes were widely distributed on all the chromosomes. The LcMADS-box gene family was divided into six subgroups (Mα, Mß, Mγ, Mδ, MIKC, and UN) based on their phylogenetical relationships with Arabidopsis, and the closely linked subgroups exhibited more similarity in terms of motif distribution and intron/exon numbers. Transcriptome analysis indicated that LcMADS-box gene expression varied in different tissues, which can be divided into universal expression and specific expression. Furthermore, we further validated that LcMADS-box genes can exhibit different responses to various stresses using quantitative real-time PCR (qRT-PCR). Moreover, physicochemical properties, subcellular localization, collinearity, and cis-acting elements were also analyzed. The findings of this study provide valuable insights into the MADS-box gene family in litchi, specifically in relation to stress response. The identification of hormone-related and stress-responsive cis-acting elements in the MADS-box gene promoters suggests their involvement in stress signaling pathways. This study contributes to the understanding of stress tolerance mechanisms in litchi and highlights potential regulatory mechanisms underlying stress responses.


Assuntos
Arabidopsis , Litchi , Genoma de Planta , Litchi/genética , Litchi/metabolismo , Proteínas de Domínio MADS/metabolismo , Família Multigênica , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
Pest Manag Sci ; 80(6): 2647-2657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394076

RESUMO

BACKGROUND: The wettability of target crop surfaces affects pesticide wetting and deposition. The structure and properties of the leaf surface of litchi leaves undergo severe changes after infestation by Aceria litchii (Keifer). The objective of this study was to systematically investigate the surface texture and wettability of litchi leaves infested. RESULTS: Firstly, the investigation focused on the surface structure and physicochemical properties of litchi leaves infested with Aceria litchii. Subsequently, different levels of Contact Angle (CA) were measured individually on the infested litchi leaves. Lastly, Surface Free Energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelble (OWRK) method. The outcomes revealed distinctive 3D surface structures of the erineum at various stages of mycorrhizal growth. At stage NO. 1, the height of the fungus displayed a peaked appearance, with the skewness value indicating a surface characterized by more crests. In contrast, at stages NO. 2 and NO. 3, the surface appeared relatively flat. Furthermore, post-infestation of litchi leaves, the CA of droplets on the abaxial surface of diseased leaves exhibited an increase, while the SFE value on the abaxial surface of leaves decreased significantly, in contrast to the abaxial surface of healthy leaves. CONCLUSION: The infestation behavior of Aceria litchii changed the surface structure and chemistry of litchi leaves, which directly affected the CA value of foliar liquids and the SFE value of leaves, changing the surface wettability of litchi leaves from hydrophobic to superhydrophobic. This study provides useful information for improving the wetting and deposition behavior of liquid droplets on the surface of infested leaves. © 2024 Society of Chemical Industry.


Assuntos
Litchi , Folhas de Planta , Molhabilidade , Propriedades de Superfície , Doenças das Plantas/parasitologia
12.
J Agric Food Chem ; 72(3): 1674-1682, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38216146

RESUMO

Muscaris is a modern white grape variety with good fungal resistance and a pleasant aroma, the molecular background of which was unknown. A comparative aroma extract dilution analysis applied to Muscaris grapes and grapes of the father variety Muskateller revealed little differences and resulted in 39 and 35 odorants, respectively. Sixteen odorants exceeded their odor threshold concentrations. Odor reconstitution and omission experiments showed that the distinct lychee note in the aroma of the Muscaris grapes was generated by the combination of (2S,4R)-rose oxide and geraniol. This finding will guide further molecular research on the transfer of the lychee note into wine and may also be helpful for the targeted breeding of new grape varieties.


Assuntos
Asparagaceae , Litchi , Vitis , Compostos Orgânicos Voláteis , Vinho , Odorantes/análise , Olfato , Melhoramento Vegetal , Vinho/análise , Compostos Orgânicos Voláteis/análise
13.
Environ Sci Pollut Res Int ; 31(7): 10430-10442, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196041

RESUMO

The coexistence of heavy metals and antibiotics in the environment always results in greater toxicity compared to the individual precursors. Therefore, efficient and economic technology for the simultaneous removal of antibiotics and heavy metals is essential. Herein, litchi leaves biochar carbonized at 550 °C (L550) demonstrated high efficiency in co-removal of CTC (1838.1 mmol/kg) and Cu (II) (1212.9 mmol/kg) within wide range of pH (pH 4-7). Ionic strength obviously enhanced the Cu (II) removal but showed no significant effect on CTC removal. Although Al3+ and HPO42- decreased the adsorption capacities of CTC and Cu (II) on L550, the coexistence of Na+, K+, Mg2+, Cl-, NO3-, CO32- and SO42- showed a negligible effect on the simultaneous removal of CTC and Cu (II). Moreover, the adsorption capacities of CTC and Cu (II) on L550 were excellent in the river water, tap water, and lake water. In addition to electrostatic interactions, ion exchange governed Cu (II) adsorption, while surface complexation played a key role in CTC adsorption on L550. Our results demonstrated that litchi leaves biochar could be a promising adsorbent for remediating multi-contaminated environments.


Assuntos
Clortetraciclina , Litchi , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Carvão Vegetal , Antibacterianos , Eletrólitos , Íons , Adsorção , Água , Concentração Osmolar , Concentração de Íons de Hidrogênio
14.
Nat Commun ; 15(1): 22, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167822

RESUMO

Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.


Assuntos
Litchi , Phytophthora , Litchi/metabolismo , Phytophthora/fisiologia , Polissacarídeo-Liases/metabolismo , Proteínas/metabolismo , Imunidade Vegetal , Morte Celular , Doenças das Plantas
15.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246440

RESUMO

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Assuntos
Litchi , Polifenóis , Frutas/química , Extratos Vegetais , Antioxidantes/farmacologia
16.
Microbiol Spectr ; 12(1): e0353123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084976

RESUMO

IMPORTANCE: Peronophythora litchii is the pathogen of litchi downy blight, which is the most serious disease in litchi. Autophagy is an evolutionarily conserved catabolic process in eukaryotes. Atg8 is a core protein of the autophagic pathway, which modulates growth and pathogenicity in the oomycete P. litchii. In P. litchii, CRISPR/Cas9-mediated knockout of the PlATG8 impaired autophagosome formation. PlATG8 knockout mutants exhibited attenuated colony expansion, sporangia production, zoospore discharge, and virulence on litchi leaves and fruits. The reduction in zoospore release was likely underpinned by impaired sporangial cleavage. Thus, in addition to governing autophagic flux, PlAtg8 is indispensable for vegetative growth and infection of P. litchii.


Assuntos
Litchi , Phytophthora , Esporângios , Phytophthora/fisiologia , Litchi/metabolismo , Autofagia
17.
J Exp Bot ; 75(3): 868-882, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37891009

RESUMO

The gene regulatory networks that govern seed development are complex, yet very little is known about the genes and processes that are controlled by DNA methylation. Here, we performed single-base resolution DNA methylome analysis and found that CHH methylation increased significantly throughout seed development in litchi. Based on the association analysis of differentially methylated regions and weighted gene co-expression network analysis (WGCNA), 46 genes were identified as essential DNA methylation-regulated candidate genes involved in litchi seed development, including LcSR45, a homolog of the serine/arginine-rich (SR) splicing regulator SR45. LcSR45 is predominately expressed in the funicle, embryo, and seed integument, and displayed increased CHH methylation in the promoter during seed development. Notably, silencing of LcSR45 in a seed-aborted litchi cultivar significantly improved normal seed development, whereas the ectopic expression of LcSR45 in Arabidopsis caused seed abortion. Furthermore, LcSR45-dependent alternative splicing events were found to regulate genes involved in seed development. Together, our findings demonstrate that LcSR45 is hypermethylated, and plays a detrimental role in litchi seed development, indicating a global increase in DNA methylation at this stage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Litchi , Litchi/genética , Litchi/metabolismo , Metilação de DNA , Splicing de RNA , Sementes , Frutas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Arabidopsis/metabolismo
18.
Plant Physiol ; 194(3): 1779-1793, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039157

RESUMO

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.


Assuntos
Proteínas de Transporte , Esterases , Litchi , Phytophthora , Melhoramento Vegetal , Transdução de Sinais
19.
Int J Food Microbiol ; 411: 110528, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38118356

RESUMO

Lychee downy blight (LDB), a common disease caused by the oomycete Phytophthora litchii, poses a significant threat to both pre- and post-harvest stages, leading to substantial economic losses. Famoxadone, a quinone outside inhibitor fungicide, was registered for controlling LDB in China in 2002. However, limited information is available regarding the risk, mechanism, and impact on lychee fruit quality associated with famoxadone resistance. In this study, we determined the sensitivity of 133 P. litchii isolates to famoxadone, yielding a mean EC50 value of 0.46 ± 0.21 µg/mL. Through fungicide adaption, we derived resistant mutants with M124I and Y131C substitutions in PlCyt b (Cytochrome b in P. litchii) from wild-type isolates. In vitro assessments revealed that the fitness of the resistant mutants was significantly lower compared to the parental isolates. These laboratory findings demonstrate a moderate resistance risk of P. litchii to famoxadone. Molecular docking analyses indicated that the M124I and Y131C alterations disrupted hydrogen bonds and weakened the binding energy between famoxadone and PlCyt b. This indicates that the M124I and Y131C changes do indeed confer famoxadone resistance in P. litchii. Infection caused by famoxadone-resistant mutants exhibited a decreased or comparable impact on the characteristic traits of lychee fruit compared to the sensitive isolate. For future detection of famoxadone-resistant strains, AS-PCR primers were designed based on the M124I substitution.


Assuntos
Fungicidas Industriais , Litchi , Phytophthora , Phytophthora/genética , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Frutas , Simulação de Acoplamento Molecular
20.
J Agric Food Chem ; 72(1): 219-229, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131297

RESUMO

In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 µg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.


Assuntos
Litchi , Phytophthora , Litchi/genética , Litchi/metabolismo , Frutas , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA