Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Genome Res ; 34(7): 997-1007, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39103228

RESUMO

We present the first chromosome-level genome assembly of the grasshopper, Locusta migratoria, one of the largest insect genomes. We use coverage differences between females (XX) and males (X0) to identify the X Chromosome gene content, and find that the X Chromosome shows both complete dosage compensation in somatic tissues and an underrepresentation of testis-expressed genes. X-linked gene content from L. migratoria is highly conserved across seven insect orders, namely Orthoptera, Odonata, Phasmatodea, Hemiptera, Neuroptera, Coleoptera, and Diptera, and the 800 Mb grasshopper X Chromosome is homologous to the fly ancestral X Chromosome despite 400 million years of divergence, suggesting either repeated origin of sex chromosomes with highly similar gene content, or long-term conservation of the X Chromosome. We use this broad conservation of the X Chromosome to test for temporal dynamics to Fast-X evolution, and find evidence of a recent burst evolution for new X-linked genes in contrast to slow evolution of X-conserved genes.


Assuntos
Evolução Molecular , Genoma de Inseto , Gafanhotos , Cromossomo X , Animais , Cromossomo X/genética , Masculino , Feminino , Gafanhotos/genética , Genes Ligados ao Cromossomo X , Cromossomos de Insetos/genética , Locusta migratoria/genética , Mecanismo Genético de Compensação de Dose
2.
Pestic Biochem Physiol ; 203: 106014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084805

RESUMO

Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.


Assuntos
Transportador de Glucose Tipo 4 , Inseticidas , Locusta migratoria , Nitrilas , Ovário , Piretrinas , Interferência de RNA , Animais , Piretrinas/farmacologia , Feminino , Nitrilas/farmacologia , Ovário/metabolismo , Ovário/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Locusta migratoria/genética , Locusta migratoria/efeitos dos fármacos , Locusta migratoria/metabolismo , Inseticidas/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Vitelogeninas/metabolismo , Vitelogeninas/genética , Metabolismo Energético/efeitos dos fármacos , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Hormônios Juvenis/metabolismo , Hormônios Juvenis/farmacologia , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Triglicerídeos/metabolismo
3.
Insect Biochem Mol Biol ; 173: 104164, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068995

RESUMO

Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling affect social aggregation, mood and psychiatric disorders, nociceptive and depressive behaviors. Olfactory dysfunction is one of the distinct symptoms of these behaviors, but function and mechanism of JAK and STAT in modulating olfaction remain largely unknown. Migratory locusts show olfactory preference for their own volatiles. We thus use this animal model to explore functions and mechanisms of JAK and STAT5B in mediating olfaction response to their own volatiles. Tissue distribution study shows that JAK and STAT5B express in antennae and brains, especially in antennal lobes and mushroom bodies in locust brains, and knockdown of these two genes by RNA interference (RNAi) in antennae and brains results in the loss of olfactory preference for locust volatiles, including chemical odorants indole and ß-ionone. RNA-seq analysis reveals that JAK and STAT5B RNAi knockdown downregulates a functional class of transcripts in nucleoprotein complex, including heterogeneous nuclear ribonucleoprotein C (hnRNPC) and small nuclear ribonucleoprotein polypeptide F (SNRPF). HnRNPC and SNRPF mRNAs and proteins are also expressed in antennae and brains, and RNAi knockdown of these two genes reduces the percentage of locusts preferring volatiles, including chemical odorants indole and ß-ionone. Furthermore, RNAi knockdown of dopamine receptor 1 (DopR1) results in the decrease of JAK mRNA level in antennae, and JAK/STAT5B, hnRNPC and SNRPF are required for dopamine receptor 1 (DopR1) to modulate olfactory preference for their own volatiles. This study confirms that JAK/STAT5B signaling modulates olfaction by affecting expression levels of hnRNPC and SNRPF, and this pathway is also required for DopR1 to modulate olfactory preference for their own volatiles. These findings highlight novel roles of JAK and STAT5B in modulating olfactory preference. This study provides novel insights into functional links among JAK/STAT5B signaling, RNA binding proteins and DopR1 underlying the modulation of olfactory behaviors.


Assuntos
Proteínas de Insetos , Janus Quinases , Animais , Janus Quinases/metabolismo , Janus Quinases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Olfato , Antenas de Artrópodes/metabolismo , Locusta migratoria/metabolismo , Locusta migratoria/genética , Encéfalo/metabolismo , Transdução de Sinais , Interferência de RNA
4.
Genes (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062629

RESUMO

The epidermal cells of insects are polarized epithelial cells that play a pivotal role in the insect's molting process. Sinuous, a pivotal structural protein involved in the formation of septate junctions among epithelial cells, is essential for its physiological function. In this study, to determine whether sinuous participates in the regulation of insect molting, we identified the sinuous gene, Lmsinu, in Locusta migratoria, which encodes a protein belonging to the claudin family and shares 62.6% identity with Drosophila's sinuous protein. Lmsinu is expressed in multiple tissues, and its expression level in the integument significantly increases prior to molting. Knockdown of Lmsinu in L. migratoria results in larval mortality during molting. Furthermore, hematoxylin and eosin and chitin staining demonstrate that the downregulation of Lmsinu led to a prolonged degradation process of the old cuticle during the molting process. Electron microscopy analysis further revealed that knockdown of Lmsinu disrupts the formation of septate junctions among epidermal cells, which are a monolayer of polarized epithelial cells, which may hinder the functionality of epidermal cells during the process of molting. In summary, these findings suggest that Lmsinu plays a role in nymph molting by regulating the formation of septate junctions among epidermal cells.


Assuntos
Claudinas , Proteínas de Insetos , Locusta migratoria , Muda , Animais , Muda/genética , Locusta migratoria/genética , Locusta migratoria/metabolismo , Locusta migratoria/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Claudinas/genética , Claudinas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879326

RESUMO

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Assuntos
Comportamento Alimentar , Proteínas de Insetos , Mucosa Intestinal , Locusta migratoria , Proteínas Qa-SNARE , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Comportamento Alimentar/fisiologia , Técnicas de Silenciamento de Genes , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Peso Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento
6.
J Econ Entomol ; 117(3): 1130-1140, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579138

RESUMO

Metarhizium anisopliae is an important class of entomopathogenic fungi used for the biocontrol of insects, but its virulence is affected by insect immunity. We identified a novel FK506 binding protein gene that was differentially expressed between control and Metarhizium-treated Locusta migratoria manilensis. We hypothesized that this protein played an important role in Metarhizium infection of L. migratoria and could provide new insights for developing highly efficient entomopathogenic fungi. We, therefore, cloned the specific gene and obtained its purified protein. The gene was then named FKBP52, and its dsRNA (dsFKBP52) was synthesized and used for gene interference. Bioassay results showed that the mortality of L. migratoria treated with dsFKBP52 + Metarhizium was significantly lower than that of other treatments. Furthermore, immune-related genes (MyD88, Dorsal, Cactus, and Defensin) in L. migratoria treated with dsFKBP52 + Metarhizium showed significant upregulation compared to that treated with Metarhizium only. However, the activities of peroxidase (POD), superoxide dismutase (SOD), and calcineurin (CaN) showed fluctuations. These results suggest that the FKBP52 gene may play a crucial role in the innate immunity of L. migratoria. The effect of its silencing indicated that this immunity-related protein might be a potential target for insect biocontrol.


Assuntos
Proteínas de Insetos , Locusta migratoria , Metarhizium , Proteínas de Ligação a Tacrolimo , Animais , Locusta migratoria/genética , Locusta migratoria/imunologia , Metarhizium/fisiologia , Metarhizium/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Controle Biológico de Vetores , Imunidade Inata , Sequência de Aminoácidos
7.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685214

RESUMO

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Assuntos
Proteínas de Insetos , Locusta migratoria , Morfogênese , Ninfa , Animais , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Ninfa/crescimento & desenvolvimento , Interferência de RNA , Intestinos
8.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582577

RESUMO

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Assuntos
Locusta migratoria , Muda , Animais , Muda/genética , Ecdisona/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
9.
Sci China Life Sci ; 67(6): 1242-1254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478296

RESUMO

RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.


Assuntos
Adenosina , Locusta migratoria , Metiltransferases , Animais , Adenosina/metabolismo , Adenosina/análogos & derivados , Locusta migratoria/genética , Locusta migratoria/fisiologia , Locusta migratoria/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Transcriptoma , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Gafanhotos/genética , Gafanhotos/fisiologia , Gafanhotos/metabolismo
10.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537854

RESUMO

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Assuntos
Sistema Digestório , Trato Gastrointestinal , Locusta migratoria , Proteínas Monoméricas de Ligação ao GTP , Controle Biológico de Vetores , Interferência de RNA , Proteínas de Transporte Vesicular , Animais , Sistema Digestório/crescimento & desenvolvimento , Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Homeostase , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Controle Biológico de Vetores/métodos , Multimerização Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Masculino , Feminino , Trato Gastrointestinal/crescimento & desenvolvimento
11.
Insect Mol Biol ; 33(4): 338-349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38411321

RESUMO

Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust Locusta migratoria, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts. We found that the five distinct transcripts of the locust MLCK gene are expressed in a tissue-specific manner, including three muscle-specific isoforms and two generic isoforms. To characterise the kinase activity of locust MLCK, we recombinantly expressed LmMLCK-G, the smallest locust MLCK isoform, in insect Sf9 cells. We demonstrated that LmMLCK-G is a Ca2+/calmodulin-dependent kinase that specifically phosphorylates serine 50 of locust muscle myosin RLC (LmRLC). Additionally, we found that almost all LmRLC molecules in the flight muscle and the hindleg muscles of adult locusts are phosphorylated.


Assuntos
Proteínas de Insetos , Locusta migratoria , Quinase de Cadeia Leve de Miosina , Animais , Locusta migratoria/genética , Locusta migratoria/enzimologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Células Sf9 , Filogenia , Músculos/metabolismo
12.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37489033

RESUMO

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Assuntos
Locusta migratoria , Músculo Estriado , Animais , Locusta migratoria/genética , Locusta migratoria/metabolismo , Sequência de Aminoácidos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Músculo Estriado/metabolismo
13.
Pestic Biochem Physiol ; 196: 105620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945256

RESUMO

Cytochrome P450 monooxygenases (P450s) are a superfamily of multifunctional heme-containing proteins and could function as odorant-degrading enzymes (ODEs) in insect olfactory systems. In our previous study, we identified a P450 gene from the antennal transcriptome of Locusta migratoria, LmCYP6MU1, which could be induced by a variety of volatiles. However, the regulatory mechanisms of this gene in response to volatiles remain unknown. In current study, we investigated the tissues and development stages expression patterns of LmCYP6MU1 and determined its olfactory function in the recognition of the main host plant volatiles which induced LmCYP6MU1 expression. The results showed that LmCYP6MU1 was antenna-rich and highly expressed throughout the antennal developmental stages of locusts. LmCYP6MU1 played important roles in the recognition of trans-2-hexen-1-al and nonanal. Insect CncC regulates the expression of P450 genes. We tested whether LmCncC regulates LmCYP6MU1 expression. It was found that LmCncC knockdown in the antennae resulted in the downregulation of LmCYP6MU1 and repressed the volatiles-mediated induction of LmCYP6MU1. LmCncC knockdown reduced the electroantennogram (EAG) and behavioral responses of locusts to volatiles. These results suggested that LmCncC could regulate the basal and volatiles-mediated inducible expression of LmCYP6MU1 responsible for the recognition of trans-2-hexen-1-al and nonanal. These findings provide an original basis for understanding the regulation mechanisms of LmCncC on LmCYP6MU1 expression and help us better understand the LmCncC-mediated olfactory plasticity.


Assuntos
Locusta migratoria , Animais , Locusta migratoria/genética , Locusta migratoria/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
14.
Pestic Biochem Physiol ; 196: 105627, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945261

RESUMO

BACKGROUND: The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS: In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS: Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.


Assuntos
Inseticidas , Locusta migratoria , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Arch Insect Biochem Physiol ; 114(4): e22055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786392

RESUMO

Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.


Assuntos
Locusta migratoria , Microsporídios , Animais , Locusta migratoria/genética , Microsporídios/fisiologia , Peroxidase
16.
Int J Biol Macromol ; 253(Pt 6): 127389, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827395

RESUMO

Locusts (Locusta migratoria) are one of the most destructive insect pests worldwide. Entomopathogenic fungi can infect and kill locusts, with Metarhizium acridum having evolved as a specialized acridid pathogen. However, locusts have evolved countermeasures to limit or avoid microbial pathogens, although the underlying molecular mechanisms behind these defenses remain obscure. Here, we demonstrate that L. migratoria exhibit avoidance behaviors towards M. acridum contaminated food via recognition of fungal volatiles, with locust perception of the volatile mediated by the LmigCSP60 chemosensory protein. RNAi-knockdown of LmigCSP60 lowered locust M. acridum avoidance behavior and increased infection and mortality. The fungal volatile, 2-phenylethanol (PEA), was identified to participate in locust behavioral avoidance. RNAi-knockdown of LmigCSP60 reduced antennal electrophysiological responses to PEA and impaired locust avoidance to the compound. Purified LmigCSP60 was able to bind a set of fungal volatiles including PEA. Furthermore, reduction of PEA emission by M. acridum via construction of a targeted gene knockout mutant of the alcohol dehydrogenase gene (ΔMaAdh strain) that contributes to PEA production reduced locust avoidance behavior towards the pathogen. These findings identify an olfactory circuit used by locusts to detect and avoid potential microbial pathogens before they are capable of initiating infection and highlight behavioral and olfactory adaptations affecting the co-evolution of host-pathogen interactions.


Assuntos
Gafanhotos , Locusta migratoria , Animais , Gafanhotos/genética , Proteínas de Insetos/genética , Locusta migratoria/genética , Olfato , Alimentos
17.
Genes (Basel) ; 14(7)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37510331

RESUMO

The TRP channel superfamily was widely found in multiple species. They were involved in many extrasensory perceptions and were important for adapting to the environment. The migratory locust was one of the worldwide agricultural pests due to huge damage. In this study, we identified 13 TRP superfamily genes in the locust genome. The number of LmTRP superfamily genes was consistent with most insects. The phylogenetic tree showed that LmTRP superfamily genes could be divided into seven subfamilies. The conserved motifs and domains analysis documented that LmTRP superfamily genes contained unique characteristics of the TRP superfamily. The expression profiles in different organs identified LmTRP superfamily genes in the head and antennae, which were involved in sensory function. The expression pattern of different life phases also demonstrated that LmTRP superfamily genes were mainly expressed in third-instar nymphs and male adults. Our findings could contribute to a better understanding of the TRP channel superfamily gene and provide potential targets for insect control.


Assuntos
Locusta migratoria , Animais , Locusta migratoria/genética , Locusta migratoria/metabolismo , Filogenia , Perfilação da Expressão Gênica , Insetos/genética
18.
RNA Biol ; 20(1): 323-333, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310197

RESUMO

RNA interference (RNAi) is a specific post-transcriptional gene-silencing phenomenon, which plays an important role in the regulation of gene expression and the protection from transposable elements in eukaryotic organisms. In Drosophila melanogaster, RNAi can be induced by microRNA (miRNA), endogenous small interfering RNA (siRNA), or exogenous siRNA. However, the biogenesis of miRNA and siRNA in these RNAi pathways is aided by the double-stranded RNA binding proteins (dsRBPs) Loquacious (Loqs)-PB, Loqs-PD or R2D2. In this study, we identified three alternative splicing variants of Loqs, namely Loqs-PA, -PB, and -PC in the orthopteran Locusta migratoria. We performed in vitro and in vivo experiments to study the roles of the three Loqs variants in the miRNA- and siRNA-mediated RNAi pathways. Our results show that Loqs-PB assists the binding of pre-miRNA to Dicer-1 to lead to the cleavage of pre-miRNA to yield matured miRNA in the miRNA-mediated RNAi pathway. In contrast, different Loqs proteins participate in different siRNA-mediated RNAi pathways. In exogenous siRNA-mediated RNAi pathway, binding of Loqs-PA or LmLoqs-PB to exogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2, whereas in endogenous siRNA-mediated RNAi pathway, binding of Loqs-PB or Loqs-PC to endogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2. Our findings provide new insights into the functional importance of different Loqs proteins derived from alternative splicing variants of Loqs in achieving high RNAi efficiency in different RNAi pathways in insects.


Assuntos
Processamento Alternativo , Locusta migratoria , MicroRNAs , RNA Interferente Pequeno , Animais , Locusta migratoria/genética , MicroRNAs/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA
19.
Int J Radiat Biol ; 99(12): 1978-1989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37382969

RESUMO

PURPOSE: Irradiation of food is promising for control of pests to minimize postharvest losses of yields and thus improvement of food safety, shelf life of produce. It is a method of choice that induces a series of lethal biochemical and molecular changes culminating into the engagement of a downstream cascade to cause abnormalities in irradiated pests. In this study, the effects of iodine-131 (131I) isotope radiation on the male gonad development of the migratory locust, Locusta migratoria, were evaluated. MATERIALS AND METHODS: Newly emerged adult male locusts, less than one-day-old, were divided into two groups, control and irradiated. Locusts in the control group (n = 20 insects) didn't drink irradiated water and were reared under normal environmental conditions for one week. Locusts in the irradiated group (n = 20 insects) were exposed to irradiated water at a dose of 30 mCi and they were subsequently observed until they drank the whole quantity. RESULTS: At the end of the experiment, scanning and electron microscopic examination of testes obtained from irradiated locusts revealed several major abnormalities, including malformed nuclei of spermatozoa, irregular plasma membranes, shrinkage of testicular follicles, vacuolated cytoplasm, disintegrated nebenkern and agglutinations of spermatids. Flow cytometry analysis revealed that 131I radiation induced both early and late apoptosis, but not necrosis, in testicular tissues. Testes of irradiated insects also exhibited a burst in reactive oxygen species (ROS), as indicated by significant elevation in amounts of malondialdehyde (MDA), a marker for peroxidation of lipids. In contrast, irradiation coincided with significant reductions in activities of enzymatic antioxidant biomarkers. Relative to controls, a three-fold upregulation of expression of mRNA of heat shock protein, Hsp90, was observed in testicular tissue of irradiated locusts. 131I-irradiated insects exhibited genotoxicity, as indicated by significant increases in various indicators of DNA damage by the comet assay, including tail length (7.80 ± 0.80 µm; p < .01), olive tail moment (40.37 ± 8.08; p < .01) and tail DNA intensity % (5.1 ± 0.51; p < .01), in testicular cells compared to the controls. CONCLUSION: This is the first report on elucidation of I131-irradiation-mediated histopathological, biochemical and molecular mechanisms in gonads of male L. migratoria. Herein, the findings underscore the utility of 131I radiation as an eco-friendly postharvest strategy for management of insect pests and in particular for control of populations of L. migratoria.


Assuntos
Locusta migratoria , Animais , Masculino , Locusta migratoria/química , Locusta migratoria/genética , Conservação dos Recursos Naturais , Água
20.
Dev Comp Immunol ; 145: 104711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062456

RESUMO

Locusta migratoria manilensis is a major agricultural pest that causes severe direct and indirect damage to several crops. Thus, to provide a theoretical foundation for pest control, the role of CrebA in the reproduction and immune regulation of L. migratoria was investigated. CrebA is a bZIP transcription factor that critically regulates intracellular protein secretion. In this study, CrebA was widely expressed in the brain, fat body, integument, midgut, and reproductive tissues of different maturity stages of adult locusts, especially in the female fat body. RNA interfering (RNAi)-mediated silencing of CrebA inhibited locusts ovarian development, and key reproduction gene expressions, Vgs, VgRs, Chico, and JHAMT were downregulated. After the locusts were injected with Micrococcus luteus or Escherichia coli, M. luteus activated lysozyme expression, while the E. coli activated both phenol oxidase cascade and lysozyme expression. Furthermore, both bacteria stimulated the upregulation of the antimicrobial peptide genes DEF3 and DEF4. However, CrebA silencing is fatal to locusts infection with E. coli, with a mortality rate of up to 96.3%, and resulted in a significant decrease in the expression of DEF3 and DEF4 and changes in the activities of phenol oxidase and lysozyme of locusts infected by bacteria. Collectively, CrebA may be involved in diverse biological processes, including reproduction and immunity. CrebA inhibited locusts reproduction by regulating JH signaling pathway and inhibits the expression of immune genes TLR6, IMD, and AMPs. These results demonstrate CrebA seems to play a crucial role in reproduction and innate immunity.


Assuntos
Locusta migratoria , RNA , Feminino , Animais , RNA/metabolismo , Locusta migratoria/genética , Interferência de RNA , Muramidase/metabolismo , Escherichia coli/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Reprodução , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA