Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.291
Filtrar
1.
J Physiol Sci ; 74(1): 29, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730366

RESUMO

L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.


Assuntos
Envelhecimento , Ácido Ascórbico , Humanos , Envelhecimento/fisiologia , Animais , Longevidade/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/metabolismo
2.
BMC Geriatr ; 24(1): 388, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693478

RESUMO

BACKGROUND: Metals have been linked to a diverse spectrum of age-related diseases; however, the effects of metal exposure on health span remains largely unknown. This cohort study aims to determine the association between plasma metal and health span in elder adults aged ≥ 90 years. METHODS: The plasma concentrations of seven metals were measured at baseline in 300 elder adults. The end of the health span (EHS) was identified as the occurrence of one of eight major morbidities or mortality events. We used Cox regression to assess hazard ratios (HR). The combined effects of multiple metal mixtures were estimated using grouped-weighted quantile sum (GWQS), quantile g-computation (Q-gcomp), and Bayesian kernel machine regression (BKMR) methods. RESULTS: The estimated HR for EHS with an inter-quartile range (IQR) increment for selenium (Se) was 0.826 (95% confidence interval [CI]: 0.737-0.926); magnesium (Mg), 0.806 (95% CI: 0.691-0.941); iron (Fe), 0.756 (95% CI: 0.623-0.917), and copper (Cu), 0.856 (95% CI: 0.750-0.976). The P for trend of Se, Mg, and Fe were all < 0.05. In the mixture analyses, Q-gcomp showed a negative correlation with EHS (P = 0.904), with the sum of the negative coefficients being -0.211. CONCLUSION: Higher plasma Se, Mg, and Fe reduced the risk of premature end of health span, suggesting that essential metal elements played a role in health maintenance in elder adults.


Assuntos
Metais , Humanos , Feminino , Masculino , Idoso de 80 Anos ou mais , Estudos Prospectivos , Metais/sangue , Estudos de Coortes , Longevidade/fisiologia , Longevidade/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Selênio/sangue
3.
Nat Commun ; 15(1): 3145, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605005

RESUMO

Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αßT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.


Assuntos
Longevidade , Neoplasias , Humanos , Animais , Camundongos , Longevidade/fisiologia , Neoplasias/genética , Subpopulações de Linfócitos T , Células Matadoras Naturais , Ratos-Toupeira/fisiologia
4.
Biochemistry (Mosc) ; 89(2): 371-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622103

RESUMO

The article describes the history of studies of survival data carried out at the Research Institute of Physico-Chemical Biology under the leadership of Academician V. P. Skulachev from 1970s until present, with special emphasis on the last decade. The use of accelerated failure time (AFT) model and analysis of coefficient of variation of lifespan (CVLS) in addition to the Gompertz methods of analysis, allows to assess survival curves for the presence of temporal scaling (i.e., manifestation of accelerated aging), without changing the shape of survival curve with the same coefficient of variation. A modification of the AFT model that uses temporal scaling as the null hypothesis made it possible to distinguish between the quantitative and qualitative differences in the dynamics of aging. It was also shown that it is possible to compare the data on the survival of species characterized by the survival curves of the original shape (i.e., "flat" curves without a pronounced increase in the probability of death with age typical of slowly aging species), when considering the distribution of lifespan as a statistical random variable and comparing parameters of such distribution. Thus, it was demonstrated that the higher impact of mortality caused by external factors (background mortality) in addition to the age-dependent mortality, the higher the disorder of mortality values and the greater its difference from the calculated value characteristic of developed countries (15-20%). For comparison, CVLS for the Paraguayan Ache Indians is 100% (57% if we exclude prepuberty individuals as suggested by Jones et al.). According to Skulachev, the next step is considering mortality fluctuations as a measure for the disorder of survival data. Visual evaluation of survival curves can already provide important data for subsequent analysis. Thus, Sokolov and Severin [1] found that mutations have different effects on the shape of survival curves. Type I survival curves generally retains their standard convex rectangular shape, while type II curves demonstrate a sharp increase in the mortality which makes them similar to a concave exponential curve with a stably high mortality rate. It is noteworthy that despite these differences, mutations in groups I and II are of a similar nature. They are associated (i) with "DNA metabolism" (DNA repair, transcription, and replication); (ii) protection against oxidative stress, associated with the activity of the transcription factor Nrf2, and (iii) regulation of proliferation, and (or these categories may overlap). However, these different mutations appear to produce the same result at the organismal level, namely, accelerated aging according to the Gompertz's law. This might be explained by the fact that all these mutations, each in its own unique way, either reduce the lifespan of cells or accelerate their transition to the senescent state, which supports the concept of Skulachev on the existence of multiple pathways of aging (chronic phenoptosis).


Assuntos
Envelhecimento , Longevidade , Humanos , Longevidade/fisiologia , Envelhecimento/genética , Mutação , Estresse Oxidativo
5.
Nutrients ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674833

RESUMO

BACKGROUND: The relationship between functional and nutritional status in the geriatric population remains an issue of debate and there is a gap in the knowledge regarding this field in long-lived individuals. AIM: The main aim of this study was to assess the association between selected blood parameters of nutritional status and functional status in extreme longevity. METHODS: The inclusion criteria were centenarians above 100 years of age who were examined at their homes, and blood samples were collected. The study group consisted of 170 individuals (25 men and 145 women, median age 100.75 years [100.29-101.58]). RESULTS: Total protein and albumin serum concentration was significantly lower in long-lived individuals with severe functional decline compared to individuals with preserved functional status, p = 0.000001 and p = 0.0000, respectively. Iron serum level was significantly higher in the group with preserved functional status, p = 0.04. Preserved functional status was positively correlated with total protein serum concentration (p = 0.000), albumin concentration (p = 0.000), and iron serum level (p = 0.029). A negative correlation was stated between c-reactive protein (CRP) and functional status (p = 0.032). Univariable logistic regression analysis showed that the functional status of long-lived individuals depends on total protein (OR 2.89, CI 95% [1.67-5.0]) and albumin concentrations (OR 2.34, CI 95% [1.39-3.92]). Multivariable backward stepwise logistic regression analysis showed that a total protein concentration was the only variable independently related to the preserved functional status (OR 3.2, 95% Cl [1.8-5.67]). CONCLUSIONS: In long-lived individuals, the total serum protein and albumin levels are lower in centenarians with severe functional decline, and they correlate with functional status. Total protein serum concentration is the only factor independently related to the preserved functional status in extreme longevity.


Assuntos
Proteína C-Reativa , Avaliação Geriátrica , Longevidade , Estado Nutricional , Humanos , Feminino , Masculino , Idoso de 80 Anos ou mais , Longevidade/fisiologia , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Avaliação Geriátrica/métodos , Estado Funcional , Albumina Sérica/análise , Ferro/sangue , Proteínas Sanguíneas/análise , Biomarcadores/sangue
6.
Neurobiol Aging ; 139: 73-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643691

RESUMO

Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.


Assuntos
Envelhecimento , Encéfalo , Macaca mulatta , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Envelhecimento/fisiologia , Envelhecimento/patologia , Humanos , Masculino , Longevidade/fisiologia , Feminino , Algoritmos
7.
Reproduction ; 167(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579791

RESUMO

In brief: Social insect queens display both extraordinary longevity and fertility. In this point of view, we describe their distinctive traits that make them useful models for reproductive longevity, holding implications for human health discoveries. Abstract: Social insects present an extraordinary opportunity as models for reproductive longevity because they challenge the conventional patterns of aging and reproduction seen in other model organisms. Their queens are simultaneously long-lived and highly fecund, and understanding how these traits co-occur may lead to discoveries with important implications for human health.


Assuntos
Envelhecimento , Fertilidade , Insetos , Longevidade , Reprodução , Animais , Longevidade/fisiologia , Reprodução/fisiologia , Insetos/fisiologia , Envelhecimento/fisiologia , Fertilidade/fisiologia , Humanos , Feminino , Comportamento Social
9.
Ecol Lett ; 27(3): e14390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549267

RESUMO

Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck-induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.


Assuntos
Características de História de Vida , Reprodução , Humanos , Animais , Reprodução/genética , Fertilidade , Deriva Genética , Longevidade/fisiologia
10.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446666

RESUMO

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Serina-Treonina Quinases TOR/metabolismo
11.
Appl Environ Microbiol ; 90(4): e0179923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470148

RESUMO

Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE: Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.


Assuntos
Microbioma Gastrointestinal , Longevidade , Abelhas , Animais , Longevidade/fisiologia , Insulina , Antioxidantes , Cetonas
12.
Nature ; 627(8004): 579-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480878

RESUMO

Understanding how and why menopause has evolved is a long-standing challenge across disciplines. Females can typically maximize their reproductive success by reproducing for the whole of their adult life. In humans, however, women cease reproduction several decades before the end of their natural lifespan1,2. Although progress has been made in understanding the adaptive value of menopause in humans3,4, the generality of these findings remains unclear. Toothed whales are the only mammal taxon in which menopause has evolved several times5, providing a unique opportunity to test the theories of how and why menopause evolves in a comparative context. Here, we assemble and analyse a comparative database to test competing evolutionary hypotheses. We find that menopause evolved in toothed whales by females extending their lifespan without increasing their reproductive lifespan, as predicted by the 'live-long' hypotheses. We further show that menopause results in females increasing their opportunity for intergenerational help by increasing their lifespan overlap with their grandoffspring and offspring without increasing their reproductive overlap with their daughters. Our results provide an informative comparison for the evolution of human life history and demonstrate that the same pathway that led to menopause in humans can also explain the evolution of menopause in toothed whales.


Assuntos
Evolução Biológica , Menopausa , Modelos Biológicos , Baleias , Animais , Feminino , Bases de Dados Factuais , Longevidade/fisiologia , Menopausa/fisiologia , Reprodução/fisiologia , Baleias/classificação , Baleias/fisiologia , Humanos
13.
Geriatr Gerontol Int ; 24(5): 486-492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509017

RESUMO

AIM: We examined the novel role of NUCB1(Nucleobindin-1) associated with longevity in Drosophila melanogaster. METHODS: We measured the lifespan, metabolic phenotypes, and mRNA levels of Drosophila insulin-like peptides (Dilps), the protein level of phosphorylated AKT, and the localization of FOXO and its target gene expressions in the NUCB1 knockdown condition. RESULTS: NUCB1 knockdown flies show an extended lifespan and metabolic phenotypes such as increased circulating glucose level and starvation resistance. The mRNA expression levels of Dilps and the protein level of phosphorylated AKT, a downstream component of insulin signaling, were decreased in NUCB1 knockdown flies compared with the control flies. Also, the nuclear localization of FOXO and its target gene expressions, such as d4E-BP and InR, were elevated. CONCLUSIONS: The results show that NUCB1 knockdown flies exhibits an extended lifespan. These findings suggest that NUCB1 modulates longevity through insulin signaling in Drosophila. Geriatr Gerontol Int 2024; 24: 486-492.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Insulina , Longevidade , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Longevidade/fisiologia , Longevidade/genética , Transdução de Sinais/fisiologia
14.
Mol Metab ; 81: 101902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360109

RESUMO

OBJECTIVE: Rapamycin, a powerful geroprotective drug, can have detrimental effects when administered chronically. We determined whether intermittent treatment of mice can reduce negative effects while maintaining benefits of chronic treatment. METHODS: From 6 months of age, male and female C3B6F1 hybrid mice were either continuously fed with 42 mg/kg rapamycin, or intermittently fed by alternating weekly feeding of 42 mg/kg rapamycin food with weekly control feeding. Survival of these mice compared to control animals was measured. Furthermore, longitudinal phenotyping including metabolic (body composition, GTT, ITT, indirect calorimetry) and fitness phenotypes (treadmil, rotarod, electrocardiography and open field) was performed. Organ specific pathology was assessed at 24 months of age. RESULTS: Chronic rapamycin treatment induced glucose intolerance, which was partially ameliorated by intermittent treatment. Chronic and intermittent rapamycin treatments increased lifespan equally in males, while in females chronic treatment resulted in slightly higher survival. The two treatments had equivalent effects on testicular degeneration, heart fibrosis and liver lipidosis. In males, the two treatment regimes led to a similar increase in motor coordination, heart rate and Q-T interval, and reduction in spleen weight, while in females, they equally reduced BAT inflammation and spleen weight and maintained heart rate and Q-T interval. However, other health parameters, including age related pathologies, were better prevented by continuous treatment. CONCLUSIONS: Intermittent rapamycin treatment is effective in prolonging lifespan and reduces some side-effects of chronic treatment, but chronic treatment is more beneficial to healthspan.


Assuntos
Fígado Gorduroso , Intolerância à Glucose , Masculino , Feminino , Camundongos , Animais , Longevidade/fisiologia , Sirolimo/farmacologia , Inflamação
15.
Artigo em Inglês | MEDLINE | ID: mdl-38422395

RESUMO

Macronutrient intake impacts physiology, behavior, and gene expression in a wide range of organisms. We used the response surface methodology to compare how life history traits, lifespan, and reproduction differ as a function of protein and carbohydrate intakes under choice and no-choice feeding regimens in the fruit fly, Drosophila melanogaster. We found that when offered a choice of nutritionally complementary foods mated female flies regulated toward a protein to carbohydrate ratio (P:C) that was associated with shortened lifespan and maximal egg production when compared to response surfaces derived from flies fed 1 of a range of fixed diets differing in P:C (no-choice regimen). This difference in lifespan between choice and no-choice feeding was not seen in males or virgin flies, reflecting the fact that increased protein intake is triggered by mating to support egg production. However, whereas in mated females a higher P:C intake was associated with greater egg production under both choice and no-choice feeding, contrary to expectations, choice-fed mated flies laid fewer eggs than no-choice flies on equivalent macronutrient intakes, perhaps reflecting that they had to ingest twice the volume of food to attain an equivalent intake of nutrients than no-choice flies on a diet of equivalent P:C ratio.


Assuntos
Drosophila melanogaster , Longevidade , Reprodução , Animais , Longevidade/fisiologia , Feminino , Drosophila melanogaster/fisiologia , Masculino , Reprodução/fisiologia , Carboidratos da Dieta , Dieta , Proteínas Alimentares/administração & dosagem , Comportamento de Escolha/fisiologia , Características de História de Vida , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38366688

RESUMO

Procyanidins are gaining attention due to their potential health benefits. We found that cacao liquor procyanidin (CLPr) from Theobroma cacao seeds increased the lifespan of Caenorhabditis elegans, a representative model organism for aging studies. The genetic dependence of the lifespan-extending effect of CLPr was consistent with that of blueberry procyanidin, which is dependent on unc-43, osr-1, sek-1, and mev-1, but not on daf-16, sir-2.1, or skn-1. The lifespan-extending effect of CLPr was inhibited by neuron-specific RNA interference (RNAi) targeting unc-43 and pmk-1, and in worms with loss-of-function mutations in the odr-3, odr-1, or tax-4 genes, which are essential in sensory neurons, including AWC neurons. It was also inhibited in worms in which AWC neurons or AIB interneurons had been eliminated, and in worms with loss-of-function mutations in eat-4 or glr-1, which are responsible for glutamatergic synaptic transmission. These results suggest that the lifespan-extending effect of CLPr is dependent on the nervous system. In addition, it also requires unc-43 and pmk-1 expression in nonneuronal cells, as demonstrated by the experiments with RNAi in wild-type worms, the neuronal cells of which are not affected by systemic RNAi. The osr-1 gene is expressed in hypodermal and intestinal cells and regulates the response to osmotic stress along with unc-43/calcium/calmodulin-dependent protein kinase II and the p38 mitogen-activated protein kinase pathway. Consistent with this, CLPr improved osmotic stress tolerance in an unc-43- and pmk-1-dependent manner, and it was also dependent on AWC neurons. The lifespan-extending and osmotic-tolerance-improving activities were attributed to procyanidins with a tetrameric or higher-order oligomeric structure.


Assuntos
Biflavonoides , Cacau , Proteínas de Caenorhabditis elegans , Catequina , Proantocianidinas , Animais , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Cacau/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
17.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284547

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Assuntos
Proteínas de Caenorhabditis elegans , Captopril , Animais , Humanos , Camundongos , Captopril/farmacologia , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envelhecimento , Longevidade/fisiologia , Receptor de Insulina/metabolismo , Mutação/genética , Mamíferos/metabolismo
18.
Gerontology ; 70(4): 408-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228128

RESUMO

INTRODUCTION: While several antidepressants have been identified as potential geroprotectors, the effect and mechanism of sertraline on healthspan remain to be elucidated. Here, we explored the role of sertraline in the lifespan and healthspan of Caenorhabditis elegans. METHODS: The optimal effect concentration of sertraline was first screened in wild-type N2 worms under heat stress conditions. Then, we examined the effects of sertraline on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the expression of serotonin signaling and aging-related genes was investigated to explore the underlying mechanism, and the lifespan assays were performed in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. RESULTS: Sertraline extended the lifespan in C. elegans with concomitant extension of healthspan as indicated by increasing mobility and reducing fertility and lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanistically, ser-7 orchestrated sertraline-induced longevity via the regulation of insulin and AMPK pathways, and sertraline-induced lifespan extension in nematodes was abolished in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. CONCLUSION: Sertraline promotes health and longevity in C. elegans through ser-7-insulin/AMPK pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Longevidade/fisiologia , Sertralina/farmacologia , Sertralina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Insulina , Fatores de Transcrição Forkhead/genética
19.
Biogerontology ; 25(1): 1-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38206540

RESUMO

About a year ago, members of the editorial board of Biogerontology were requested to respond to a query by the editor-in-chief of the journal as to what one question within their field of ageing research still needs to be asked and answered. This editorial is inspired by the wide range and variety of questions, ideas, comments and suggestions received in response to that query. The seven knowledge gaps identified in this article are arranged into three main categories: evolutionary aspects of longevity, biological survival and death aspects, and heterogeneity in the progression and phenotype of ageing. This is not an exhaustive and exclusive list, and may be modified and expanded. Implications of these knowledge gaps, especially in the context of ongoing attempts to develop effective interventions in ageing and longevity are also discussed.


Assuntos
Geriatria , Longevidade/fisiologia , Fenótipo , Evolução Biológica
20.
Nat Commun ; 15(1): 276, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177158

RESUMO

Dysfunctional extracellular matrices (ECM) contribute to aging and disease. Repairing dysfunctional ECM could potentially prevent age-related pathologies. Interventions promoting longevity also impact ECM gene expression. However, the role of ECM composition changes in healthy aging remains unclear. Here we perform proteomics and in-vivo monitoring to systematically investigate ECM composition (matreotype) during aging in C. elegans revealing three distinct collagen dynamics. Longevity interventions slow age-related collagen stiffening and prolong the expression of collagens that are turned over. These prolonged collagen dynamics are mediated by a mechanical feedback loop of hemidesmosome-containing structures that span from the exoskeletal ECM through the hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to adjust ECM gene expression and longevity via the transcriptional co-activator YAP-1 across tissues. Our results provide in-vivo evidence that coordinated ECM remodeling through mechanotransduction is required and sufficient to promote longevity, offering potential avenues for interventions targeting ECM dynamics.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mecanotransdução Celular , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeostase , Proteínas de Sinalização YAP , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA