RESUMO
The effects of lecithin addition on the properties of konjac glucomannan (KGM) hydrogels prepared by controlled heating were investigated. Weak hydrogels were formed at 1 % KGM, which contained relatively thick strands. The shear viscosity and shear modulus of the hydrogels increased with increasing KGM concentration. The pure KGM hydrogels exhibited relatively poor boundary lubrication at all polysaccharide concentrations studied. The inclusion of lecithin (0.001 % to 0.20 %) in the KGM hydrogels appreciably altered their rheological properties, which could be modulated by varying the lecithin/KGM ratio. Microstructural analysis showed that lecithin caused a substantial restructuring of the strands in the hydrogel network. Lecithin was also found to be a highly effective lubricant in the KGM hydrogels. Incorporation of trace amounts of lecithin led to a significant improvement in the lubricating properties of the KGM hydrogels, especially boundary lubrication. Fourier transform infrared (FTIR) and differential canning calorimetry (DSC) analyses provided information about the molecular interactions between the lecithin and KGM molecules. The ability of lecithin to increase the lubricating performance of the KGM hydrogels was mainly attributed to the adsorption of phospholipid-biopolymer complexes onto solid surfaces, which reduced the friction between them.
Assuntos
Hidrogéis , Lecitinas , Lubrificação , Mananas , Reologia , Mananas/química , Lecitinas/química , Hidrogéis/química , Viscosidade , Lubrificantes/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Currently, it is crucial for the lubricant formulation industry to explore cost-effective and environmentally friendly methodologies for analyzing the tribological properties of engine aviation lubricants under high-temperature and high-pressure operating conditions. This study demonstrates the feasibility of employing molecular dynamic simulations to gain essential insights into the evolution of the tribological properties of lubricants during operation. A three-layer molecular model was devised, comprising nickel aluminide molecules in the top and bottom layers, and polyol ester in the core. The impact of sliding velocities ranging from 20 km/h to 100 km/h was investigated under varying temperature and pressure conditions. Concentration, temperature and velocity profiles, radial distribution function, mean square displacement, and friction coefficient were calculated and analyzed in detail. Notably, the highest friction coefficients - ranging from 2.5 to 0.75 - were observed at the lowest temperature and pressure conditions tested. Conversely, other sections of the gas turbine exhibited substantially lower friction coefficients - ranging from 0 to 0.01.Simulations demonstrate that increasing pressure and temperature reduce polymer chain mobility, leading to stronger internal interactions within the lubricant. Consequently, lubricant adsorption onto metal surfaces decreases. Furthermore, the lubricant performs exceptionally well when its molecules encounter higher velocities and temperatures. Based on the results obtained, the research demonstrates that the presented technique provides both quantitative and qualitative tribological information essential for understanding a system molecular behavior, serving as a guiding framework for researchers in the field.
Assuntos
Lubrificantes , Simulação de Dinâmica Molecular , Lubrificantes/química , Fricção , Pressão , Temperatura , LubrificaçãoRESUMO
Synovial fluid lubricates articular joints by forming a hydrated layer between the cartilage surfaces. In degenerative joint diseases like osteoarthritis (OA), the synovial fluid is compromised, which leads to less effective innate lubrication and exacerbated cartilage degeneration. Studies over the years have led to the development of partially or fully synthetic biolubricants to reduce the coefficient of friction with cartilage in knee joints. Cartilage-adhering, hydrated lubricants are particularly important to provide cartilage lubrication and chondroprotection under high normal load and slow speed. Here, we report the development of a hyaluronic acid (HA)-based lubricant functionalized with cationic branched poly-L-lysine (BPL) molecules that bind to cartilage via electrostatic interactions. We surmised that the electrostatic interactions between the BPL-modified HA molecules (HA-BPL) and the cartilage facilitate localization of the HA molecules to the cartilage surface. The number of BPL molecules on the HA backbone was varied to determine the optimal grafting density for cartilage binding and HA localization. Collectively, our results show that our HA-BPL molecules adhered readily to cartilage and were effective as a lubricant in cartilage-on-cartilage shear measurements where the modified HA molecules significantly reduce the coefficient of friction compared to phosphate-buffered saline or HA alone. This proof-of-concept study shows how the incorporation of cartilage adhering moieties, such as cationic molecules, can be used to enhance cartilage binding and lubrication properties of HA.
Assuntos
Cartilagem Articular , Cátions , Ácido Hialurônico , Lubrificação , Polilisina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Adsorção , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cátions/química , Animais , Polilisina/química , Polilisina/farmacologia , Bovinos , Lubrificantes/química , Lubrificantes/farmacologia , Fricção/efeitos dos fármacos , Líquido Sinovial/metabolismo , Líquido Sinovial/química , Líquido Sinovial/efeitos dos fármacosRESUMO
Osteoarthritis (OA) is a degenerative bone and joint disease characterized by decreased cartilage lubrication, leading to continuous wear and ultimately irreversible damage. This situation is particularly challenging for early-stage OA, as current bio-lubricants lack precise targeting for small inflammatory lesions. In this work, an antibody-mediated targeting hydrogel microspheres (HMS) is developed to precisely lubricate the local injury site of cartilage and prevent the progression of early OA. Anti-Collagen type I (Anti-Col1) is an antibody that targets cartilage injury sites in early OA stages. It is anchored on a HMS matrix made of Gelatin methacrylate (GelMA) and poly (sulfobetaine methacrylate) (PSBMA) to create targeted HMS (T-G/S HMS). The T-G/S HMS's high hydrophilicity, along with the dynamic interaction between its surficial Anti-Col1 and the Col1 on cartilage injury site, ensures its precise and effective lubrication of early OA lesions. Consequently, injecting T-G/S HMS into rats with early OA significantly slows disease progression and reduces symptoms. In conclusion, the developed injectable targeted lubricating HMS and the precisely targeted lubrication strategy represent a promising, convenient technique for treating OA, particularly for slowing the early-stage OA progression.
Assuntos
Cartilagem Articular , Hidrogéis , Microesferas , Osteoartrite , Animais , Hidrogéis/química , Ratos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Lubrificação , Colágeno Tipo I/metabolismo , Metacrilatos/química , Ratos Sprague-DawleyRESUMO
Osteoarthritis (OA), which disables articular cartilage, affects millions of people. The self-healing capacity is inhibited by internal oxidative stress and external lubrication deficiency and enzymatic degradation. To overcome these challenges, a tailored cartilage-armor is designed to ameliorate the inflamed cartilage, which is implemented by a novel collagen type II (Col II)-binding peptide conjugated zwitterionic polymer (PSB-b-PColBP, PSP). By mimicking natural lubricin, PSP specifically targets the cartilage surface and forms an in situ hydration armor. This engineered cartilage-armor can prevent enzymatic cartilage degradation (nearly 100% resistance to catabolic enzymes) and provide durable lubrication properties (COF < 0.013 for 500 cycles). An autophagy-activation process, absent in previous biomimetic lubricants, enhances the enzymatic activity of the tailored cartilage-armor, offering effective anti-oxidant properties to suppress oxidative stress. By inhibiting the PI3K-Akt/NF-κB signaling pathway, chondrocytes protected by the tailored armor can secrete a cartilage matrix even in inflammatory microenvironments. In OA rat models, osteophyte formation and the inflammatory response have been inhibited by the cartilage-armor, demonstrating a therapeutic effect comparable to most drug-loaded systems. This study underscores the potential of tailoring cartilage-armor with the cartilage targeting and autophagy-activating properties in integrating offensive-defensive mechanisms for cartilage remodeling. This represents an alternative strategy for clinical OA therapy.
Assuntos
Antioxidantes , Autofagia , Cartilagem Articular , Condrócitos , Glicoproteínas , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Glicoproteínas/farmacologia , Glicoproteínas/metabolismo , Glicoproteínas/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley , Colágeno Tipo II/metabolismo , Masculino , Lubrificação , Lubrificantes/farmacologia , Lubrificantes/uso terapêutico , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacosRESUMO
Gel lubrication is routinely used during gynecological examination to prevent or reduce pain, yet its impact on microbial composition during sampling remains unclear. This study aimed to investigate whether lubricating gel affects the microbial composition of vaginal samples. We included 31 pregnant women presenting during their third trimester to clinics or emergency room and collected 143 unique vaginal samples for 16S amplicon microbial analysis. Vaginal samples were obtained using sterile swabs under various conditions: without gel-immediately frozen (n = 30), with gel-immediately frozen, without gel-at room temperature (RT) for 5 h before freezing, with gel-at RT for 5 h before freezing, and additional sampling after 24 h without gel-immediate freezing. We found that sample collection with gel lubrication influenced specimen quality-half of the gel samples failing to meet processing limitation compared to those without gel. The effect of gel on testing quality dissipated after 24 h. However, when samples met post-sequencing filters, gel lubrication did not alter the microbial composition, individual taxa abundance or alpha and beta diversity. We recommend sampling either before gel exposure or 24 h after. These findings underscore the importance of considering sample collection methodologies in vaginal microbiome studies to ensure high-quality microbial data for accurate analysis.
Assuntos
Géis , Microbiota , Manejo de Espécimes , Vagina , Feminino , Humanos , Vagina/microbiologia , Manejo de Espécimes/métodos , Gravidez , Adulto , Lubrificantes , RNA Ribossômico 16S/genética , Lubrificação , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Cremes, Espumas e Géis VaginaisRESUMO
The basic tribological experiments have reported that nano-graphene lubricating oil has excellent anti-friction and anti-wear properties, which has been widely concerned. However, the real anti-friction effect of nano-graphene lubricating oil and its impact on engine power performance, economic performance and emission performance remain to be proved. This has seriously hindered the popularization and application of nano-graphene lubricating oil in the engine field. In this paper, nano-graphene powder was chemically grafted to prepare nano-graphene lubricating oil with high dispersion stability. The influence of nano-graphene on physicochemical properties of lubricating oil was studied, and the influence of nano-graphene on engine power performance, economic performance and emission performance was explored. The results show that after modification, the dispersion of nano-graphene in lubricating oil is improved. Compared with pure lubricating oil, the addition of nano-graphene makes the kinematic viscosity of lubricating oil slightly lower, and has little effect on the density, flash point, pour point and total acid value of lubricating oil. The reversed towing torque of nano-graphene lubricating oil is reduced by 1.82-5.53%, indicating that the friction loss decreases. The specific fuel consumption of the engine is reduced, which indicates that the fuel economic performance is improved. Engine HC+NOX, CH4, CO2 emissions do not change much, but particulate matter (PM) emissions increase by 8.85%. The quantity concentration of nuclear particles, accumulated particles and total particles of nano-graphene lubricating oil are significantly higher than that of pure lubricating oil. And the increase of the quantity concentration of accumulated particles is more obvious than that of nuclear particles, and the larger the load, the more obvious this phenomenon. In order to apply nano-graphene lubricating oil to the engine, it is also necessary to further study its impact on the post-processing system, adjust the control strategy of the post-processing system and then test and calibrate.
Assuntos
Grafite , Lubrificantes , Viscosidade , Grafite/química , Lubrificantes/química , Gasolina/análise , Nanoestruturas/química , Óleos/química , Lubrificação , Emissões de Veículos/análiseRESUMO
Lubricin, secreted primarily by chondrocytes, plays a critical role in maintaining the function of the cartilage lubrication system. However, both external factors such as friction and internal factors like oxidative stress can disrupt this system, leading to osteoarthritis. Inspired by lubricin, a lubricating nanozyme, that is, Poly-2-acrylamide-2-methylpropanesulfonic acid sodium salt-grafted aminofullerene, is developed to restore the cartilage lubrication system using an "In-Out" strategy. The "Out" aspect involves reducing friction through a combination of hydration lubrication and ball-bearing lubrication. Simultaneously, the "In" aspect aims to mitigate oxidative stress by reducing free radical, increasing autophagy, and improving the mitochondrial respiratory chain. This results in reduced chondrocyte senescence and increased lubricin production, enhancing the natural lubrication ability of cartilage. Transcriptome sequencing and Western blot results demonstrate that it enhances the functionality of mitochondrial respiratory chain complexes I, III, and V, thereby improving mitochondrial function in chondrocytes. In vitro and in vivo experiments show that the lubricating nanozymes reduce cartilage wear, improve chondrocyte senescence, and mitigate oxidative stress damage, thereby mitigating the progression of osteoarthritis. These findings provide novel insights into treating diseases associated with oxidative stress and frictional damage, such as osteoarthritis, and set the stage for future research and development of therapeutic interventions.
Assuntos
Condrócitos , Glicoproteínas , Osteoartrite , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Glicoproteínas/química , Glicoproteínas/farmacologia , Lubrificação , Cartilagem Articular/metabolismo , Lubrificantes/química , Lubrificantes/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Senescência Celular/efeitos dos fármacosRESUMO
In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.
Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Teste de Materiais , Staphylococcus aureus , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Tamanho da Partícula , Próteses e Implantes , Humanos , Testes de Sensibilidade Microbiana , Animais , Polímeros/química , Polímeros/farmacologia , Aço Inoxidável/química , Lubrificação , Soroalbumina Bovina/químicaRESUMO
The role of carboxylic, aldehyde, or epoxide groups incorporated into bottlebrush macromolecules as anchoring blocks (or cartilage-binding blocks) is investigated by measuring their lubricating properties and cartilage-binding effectiveness. Mica modified with amine groups is used to mimic the cartilage surface, while bottlebrush polymers functionalized with carboxylic, aldehyde, or epoxide groups played the role of the lubricant interacting with the cartilage surface. We demonstrate that bottlebrushes with anchoring blocks effectively reduce the friction coefficient on modified surfaces by 75-95% compared to unmodified mica. The most efficient polymer appears to be the one with epoxide groups, which can react spontaneously with amines at room temperature. In this case, the value of the friction coefficient is the lowest and equals 0.009 ± 0.001, representing a 95% reduction compared to measurements on nonmodified mica. These results show that the presence of the functional groups within the anchoring blocks has a significant influence on interactions between the bottlebrush polymer and cartilage surface. All synthesized bottlebrush polymers are also used in the preliminary lubrication tests carried out on animal cartilage surfaces. The developed materials are very promising for future in vivo studies to be used in osteoarthritis treatment.
Assuntos
Cartilagem Articular , Lubrificação , Polímeros , Polímeros/química , Animais , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Propriedades de Superfície , Silicatos de Alumínio/química , Fricção , Lubrificantes/químicaRESUMO
Enhancing friction force in lubricated, compliant contacts is of particular interest due to its wide application in various engineering and biological systems. In this study, we have developed bioinspired surfaces featuring film-terminated ridges, which exhibit a significant increase in lubricated friction force compared to flat samples. We propose that the enhanced sliding friction can be attributed to the energy dissipation at the lubricated interface caused by elastic hysteresis resulting from cyclic terminal film deformation. Furthermore, increasing inter-ridge spacing or reducing terminal film thickness are favorable design criteria for achieving high friction performance. These findings contribute to our understanding of controlling lubricated friction and provide valuable insights into surface design strategies for novel functional devices.
Assuntos
Fricção , Propriedades de Superfície , Lubrificação , Materiais Biomiméticos/química , Teste de Materiais , Lubrificantes/química , Fenômenos MecânicosRESUMO
The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.
Assuntos
Ocimum basilicum , Mucilagem Vegetal , Reologia , Sementes , Ocimum basilicum/química , Sementes/química , Mucilagem Vegetal/química , Animais , Leite/química , Viscosidade , Transtornos de Deglutição , Malus/química , Sucos de Frutas e Vegetais/análise , Humanos , Água , Pós , LubrificaçãoRESUMO
This comprehensive review offers a chemical analysis of cutting fluids, delving into both their formulation and deformulation processes. The study covers a wide spectrum of cutting fluid formulations, ranging from simple compositions predominantly comprising oils, whether mineral or vegetable, to emulsions. The latter involves the integration of surfactants, encompassing both nonionic and anionic types, along with a diverse array of additives. Concerning oils, the current trend leans towards the use of vegetable oils instead of mineral oils for environmental reasons. As vegetable oils are more prone to oxidation, chemical alterations, the addition of antioxidant may be necessary. The chemical aspects of the different compounds are scrutinized, in order to understand the role of each component and its impact on the fluid's lubricating, cooling, anti-wear, and anti-corrosion properties. Furthermore, the review explores the deformulation methodologies employed to dissect cutting fluids. This process involves a two-step approach: separating the aqueous and organic phases of the emulsions by physical or chemical treatments, and subsequently conducting a detailed analysis of each to identify the compounds. Several analytical techniques, including spectrometric or chromatographic, can be employed simultaneously to reveal the chemical structures of samples. This review aims to contribute to the improvement of waste treatment stemming from cutting fluids. By gathering extensive information about the formulation, deformulation, and chemistry of the ingredients, there is a potential to enhance the waste management and disposal effectively.
Assuntos
Emulsões , Tensoativos , Emulsões/química , Tensoativos/química , Óleos de Plantas/química , Óleo Mineral/química , Antioxidantes/química , Antioxidantes/análise , Oxirredução , Lubrificação , Lubrificantes/química , Fenômenos QuímicosRESUMO
Failure of articular cartilage lubrication and inflammation are the main causes of osteoarthritis (OA), and integrated treatment realizing joint lubrication and anti-inflammation is becoming the most effective treat model. Inspired by low friction of human synovial fluid and adhesive chemical effect of mussels, our work reports a biomimetic lubricating system that realizes long-time lubrication, photothermal responsiveness and anti-inflammation property. To build the system, a dopamine-mediated strategy is developed to controllably graft hyaluronic acid on the surface of metal organic framework. The design constructs a biomimetic core-shell structure that has good dispersity and stability in water with a high drug loading ratio of 99%. Temperature of the solution rapidly increases to 55 °C under near-infrared light, and the hard-soft lubricating system well adheres to wear surfaces, and greatly reduces frictional coefficient by 75% for more than 7200 times without failure. Cell experiments show that the nanosystem enters cells by endocytosis, and releases medication in a sustained manner. The anti-inflammatory outcomes validate that the nanosystem prevents the progression of OA by down-regulating catabolic proteases and pain-related genes and up-regulating genes that are anabolic in cartilage. The study provides a bioinspired strategy to employ metal organic framework with controlled surface and structure for friction reduction and anti-inflammation, and develops a new concept of OA synergistic therapy model for practical applications.
Assuntos
Materiais Biomiméticos , Ácido Hialurônico , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Propriedades de Superfície , Lubrificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Dopamina/química , Dopamina/farmacologia , Liberação Controlada de FármacosRESUMO
The friction of solids is primarily understood through the adhesive interactions between the surfaces. As a result, slick materials tend to be nonstick (e.g., Teflon), and sticky materials tend to produce high friction (e.g., tires and tape). Paradoxically, cartilage, the slippery bearing material of human joints, is also among the stickiest of known materials. This study aims to elucidate this apparent paradox. Cartilage is a biphasic material, and the most cited explanation is that both friction and adhesion increase as load transfers from the pressurized interstitial fluid to the solid matrix over time. In other words, cartilage is slippery and sticky under different times and conditions. This study challenges this explanation, demonstrating the strong adhesion of cartilage under high and low interstitial hydration conditions. Additionally, we find that cartilage clings to itself (a porous material) and Teflon (a nonstick material), as well as other surfaces. We conclude that the unusually strong interfacial tension produced by cartilage reflects suction (like a clingfish) rather than adhesion (like a gecko). This finding is surprising given its unusually large roughness, which typically allows for easy interfacial flow and defeats suction. The results provide compelling evidence that cartilage, like a clingfish, conforms to opposing surfaces and effectively seals submerged contacts. Further, we argue that interfacial sealing is itself a critical function, enabling cartilage to retain hydration, load support, and lubrication across long periods of inactivity.
Assuntos
Cartilagem Articular , Cartilagem Articular/química , Animais , Fricção , Lubrificação , Propriedades de Superfície , Adesividade , Politetrafluoretileno/químicaRESUMO
The magnitude of the frictional forces during the ejection of porous pharmaceutical tablets plays an important role in determining the occurrence of tabletting defects. Here, we perform a systematic comparison between the maximum ejection force, static friction coefficient, and kinetic friction coefficient. All of these metrics have different physical meanings, corresponding to different stages of ejection. However, experimental limitations have previously complicated comparisons, as static and kinetic friction could not be measured simultaneously. This study presents a method for simultaneously measuring the maximum ejection force, static friction coefficient, and kinetic friction coefficient in situ during tablet ejection in routine compaction simulator experiments. Using this method, we performed a systematic comparison, including variations of (1) ejection speed, (2) compaction pressure, (3) material, and (4) lubrication method. The relative importance of each variable is discussed in detail, including how ejection speed alone can be a decisive factor in tablet chipping. The reliability of the newly developed method is supported by excellent agreement with previous studies and finite element method (FEM) simulations. Finally, we discuss the suitability of friction coefficients derived from Janssen-Walker theory and explanations for the phenomenon of die-wall static friction coefficients with apparent values far above unity.
Assuntos
Fricção , Pressão , Comprimidos , Cinética , Porosidade , Composição de Medicamentos/métodos , Lubrificação , Excipientes/química , Tecnologia Farmacêutica/métodos , Análise de Elementos FinitosRESUMO
BACKGROUND: Speculum lubrication may help to reduce the pain experienced during Pap-smear collection and hence increase uptake of cervical cancer screening and repeat testing, but there are fears of its interference with cytological results. AIM: To determine and compare the adequacy of cervical cytology smears and the mean pain scores of women undergoing cervical cancer screening with or without speculum lubrication. METHODS: This was a randomised controlled study of 132 women having cervical cancer screening at a tertiary hospital in Nigeria. Sixty-six participants were randomly assigned to the 'Gel' and 'No Gel' groups, respectively. Pap smears were collected from each participant with a lubricated speculum ('Gel group') or a non-lubricated speculum ('No Gel group'). The primary outcome measures were the proportion of women with unsatisfactory cervical cytology smears and the mean numeric rating scale pain scores, while the secondary outcome measures were the proportion of women who were willing to come for repeat testing and the cytological diagnosis of Pap-smear results. RESULTS: The baseline socio-demographic variables were similar in both groups. There was no significant difference in the proportion of unsatisfactory cervical smear results between the two groups (13.6% vs. 21.2%, p = 0.359). However, the mean pain scores were significantly lower in the gel group than in the no gel group (45.04 vs. 87.96; p<0.001). An equal proportion of the participants in each group (90.9% vs. 90.9%; p > 0.999) were willing to come for repeat cervical smears in the future. CONCLUSION: Speculum lubrication did not affect the adequacy of cervical smears but significantly reduced the pain experienced during pap smear collection. Also, it did not significantly affect the willingness to come for repeat cervical smears in the future. TRIAL REGISTRATION: The trial was registered with the Pan-African Clinical Trial Registry with a unique identification and registration number: PACTR2020077533364675.
Assuntos
Detecção Precoce de Câncer , Lubrificação , Teste de Papanicolaou , Neoplasias do Colo do Útero , Esfregaço Vaginal , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Esfregaço Vaginal/métodos , Adulto , Detecção Precoce de Câncer/métodos , Pessoa de Meia-Idade , Método Duplo-Cego , Instrumentos CirúrgicosRESUMO
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Assuntos
Flurbiprofeno , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Flurbiprofeno/química , Flurbiprofeno/administração & dosagem , Flurbiprofeno/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Portadores de Fármacos/química , Lubrificação , Liberação Controlada de Fármacos , Camundongos , Masculino , AnilidasRESUMO
The early stages of osteoarthritis (OA) in the joints are typically characterized by two key factors: the dysfunction of articular cartilage lubrication and inflammation resulting from the excessive production of reactive oxygen species (ROS). Synthetic injectable macromolecular materials present great potential for preventing the progression of early OA. In this study, to mimic the excellent lubricity of brush-like aggregates found in natural synovial fluid, we develop a novel macromolecular biolubricant (CS-PS-DA) by integrating adhesion and hydration groups onto backbone of natural biomacromolecules. CS-PS-DA exhibits a strong affinity for cartilage surfaces, enabling the formation of a stable lubrication layer at the sliding interface of degraded cartilages to restore joint lubrication performance. In vitro results from ROS scavenging and anti-inflammatory experiments indicate the great advantage of CS-PS-DA to decrease the levels of proinflammatory cytokines by inhibiting ROS overproduction. Finally, in vivo rats OA model demonstrates that intra-cavitary injection of CS-PS-DA could effectively resist cartilage wear and mitigated inflammation in the joints. This novel biolubricant provides a new and timely strategy for the treatment of OA.
Assuntos
Osteoartrite , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Lubrificação , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Propriedades de Superfície , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/químicaRESUMO
This study presents new insights into the potential role of polyelectrolyte interfaces in regulating low friction and interstitial fluid pressurization of cartilage. Polymer brushes composed of hydrophilic 3-sulfopropyl methacrylate potassium salt (SPMK) tethered to a PEEK substrate (SPMK-g-PEEK) are a compelling biomimetic solution for interfacing with cartilage, inspired by the natural lubricating biopolyelectrolyte constituents of synovial fluid. These SPMK-g-PEEK surfaces exhibit a hydrated compliant layer approximately 5 µm thick, demonstrating the ability to maintain low friction coefficients (µ â¼ 0.01) across a wide speed range (0.1-200 mm/s) under physiological loads (0.75-1.2 MPa). A novel polyelectrolyte-enhanced tribological rehydration mechanism is elucidated, capable of recovering up to â¼12% cartilage strain and subsequently facilitating cartilage interstitial fluid recovery, under loads ranging from 0.25 to 2.21 MPa. This is attributed to the combined effects of fluid confinement within the contact gap and the enhanced elastohydrodynamic behavior of polymer brushes. Contrary to conventional theories that emphasize interstitial fluid pressurization in regulating cartilage lubrication, this work demonstrates that SPMK-g-PEEK's frictional behavior with cartilage is independent of these factors and provides unabating aqueous lubrication. Polyelectrolyte-enhanced tribological rehydration can occur within a static contact area and operates independently of known mechanisms of cartilage interstitial fluid recovery established for converging or migrating cartilage contacts. These findings challenge existing paradigms, proposing a novel polyelectrolyte-cartilage tribological mechanism not exclusively reliant on interstitial fluid pressurization or cartilage contact geometry. The implications of this research extend to a broader understanding of synovial joint lubrication, offering insights into the development of joint replacement materials that more accurately replicate the natural functionality of cartilage.