Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.597
Filtrar
1.
Luminescence ; 39(5): e4775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745525

RESUMO

A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.


Assuntos
Medições Luminescentes , Luminol , Smartphone , Medições Luminescentes/métodos , Medições Luminescentes/instrumentação , Luminol/química , Substâncias Explosivas/análise , Luminescência , Limite de Detecção
2.
Biosens Bioelectron ; 258: 116351, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705074

RESUMO

Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Limite de Detecção , Medições Luminescentes , Luminol , Antígeno Prostático Específico , Catálise , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Humanos , Luminol/química , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Ferro/química , Glucose Oxidase/química , Imunoensaio/métodos , Ouro/química , Peroxidase/química , Nanopartículas Metálicas/química , Nitrogênio/química , Carbono/química , Naftóis
3.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699865

RESUMO

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Assuntos
Hemina , Peróxido de Hidrogênio , Óxido Nítrico , Hemina/química , Óxido Nítrico/análise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Sondas Moleculares/química , Luminol/química , Soluções , Medições Luminescentes , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/química , Cinética , Oxirredução
4.
Biosens Bioelectron ; 259: 116371, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761742

RESUMO

The work was based on N-(4-Aminobutyl)-N-ethylisoluminol (ABEI)-functionalized Fe-MIL-101 and gold nanoparticles (AuNPs) as sensing materials, and an electrochemiluminescence (ECL) aptasensor was constructed for detecting acetamiprid. As a metal-organic framework (MOF) material, Fe-MIL-101, was renowned for its unique three-dimensional network structure and efficient catalytic capability. ABEI, a common ECL reagent, was widely applied. ABEI was introduced into the Fe-MIL-101 structure as a luminescence functionalization reagent to form Fe-MIL-101@ABEI. This approach avoided limitations on the loading capacity of luminescent reagents imposed by modification and encapsulation methods. With character of excellent catalytic activity and ease of bioconjugation, AuNPs offered significant advantages in biosensing. Leveraging the reductive properties of ABEI, AuNPs were reduced around Fe-MIL-101@ABEI, resulting in the modified luminescent functionalized material denoted as Fe-MIL-101@ABEI@AuNPs. An aptamer was employed as a recognition element and was modified accordingly. The aptamer was immobilized on Fe-MIL-101@ABEI@AuNPs through gold-sulfur (Au-S) bonds. After capturing acetamiprid, the aptamer induced a decrease in the ECL signal intensity within the ABEI-hydrogen peroxide (H2O2) system, enabling the quantitative detection of acetamiprid. The aptasensor displayed remarkable stability and repeatability, featured a detection range of 1×10-3-1×102 nM, and had a limit of detection (LOD) of 0.3 pM (S/N=3), which underscored its substantial practical application potential.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Medições Luminescentes , Nanopartículas Metálicas , Estruturas Metalorgânicas , Neonicotinoides , Neonicotinoides/análise , Neonicotinoides/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Ouro/química , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Verduras/química , Luminol/química , Luminol/análogos & derivados , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Contaminação de Alimentos/análise
5.
Talanta ; 275: 126156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692048

RESUMO

The development of simple methods for the isolation and quantification of exosomes in biological samples is important. By using the typical two-dimensional (2D) nanomaterials, graphene oxide (GO), the present work first studied the interaction of liposomes with the nanocomposites formed by adsorbing HRP on the GO surface and found the presence of liposomes led to the release of HRP from the GO surface to the solution phase triggering the luminol-H2O2 chemiluminescence (CL) reaction to emit light. Benefiting from the similarity of exosomes to liposomes in both composition and morphology aspects, the GO-HRP nanocomposites with a mass ratio of 120:1 and 160:1 were employed for the quantitative detection of exosomes in 100-fold diluted serum samples. The whole detection process took about 15 min and as low as 3.2 × 102 particles µL-1 of exosomes could be sensitively detected. In addition to GO-HRP nanocomposites, the CL responses of other nanocomposites obtained from adsorbing HRP on other 2D nanomaterials such as layered MoS2 for exosomes were also tested. MoS2-HRP exhibited similar behavior and the LODs for the detection of exosomes were 5.8 × 102 particles µL-1. The proposed assays were a biomarker-independent quantitative method that achieved the quantification of exosomes in serum samples directly without an isolation process.


Assuntos
Exossomos , Grafite , Peroxidase do Rábano Silvestre , Medições Luminescentes , Nanoestruturas , Exossomos/química , Grafite/química , Peroxidase do Rábano Silvestre/química , Medições Luminescentes/métodos , Adsorção , Humanos , Nanoestruturas/química , Luminol/química , Molibdênio/química , Dissulfetos/química , Peróxido de Hidrogênio/química , Limite de Detecção , Lipossomos/química , Nanocompostos/química
6.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593715

RESUMO

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Assuntos
Técnicas Biossensoriais , Luminol , Zinco , RNA de Interação com Piwi , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Metais
7.
Luminescence ; 39(4): e4745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644416

RESUMO

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Assuntos
Cefazolina , Compostos Ferrosos , Imipramina , Medições Luminescentes , Luminol , Cloridrato de Venlafaxina , Cefazolina/análise , Cefazolina/química , Cloridrato de Venlafaxina/análise , Cloridrato de Venlafaxina/química , Imipramina/análise , Imipramina/química , Medições Luminescentes/métodos , Luminol/química , Nanoestruturas/química , Luminescência
8.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630309

RESUMO

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Assuntos
Luminescência , Impressão Molecular , Piretrinas , Luminol , Polímeros Molecularmente Impressos
9.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609255

RESUMO

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Compostos de Manganês , Ouro , Peróxido de Hidrogênio , Luminol , Reprodutibilidade dos Testes , Imunoensaio , Óxidos , Paládio , Receptores de Hialuronatos
10.
Talanta ; 274: 126023, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583328

RESUMO

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Medições Luminescentes , Luminol , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Luminol/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Metalocenos/química , Compostos Ferrosos/química
11.
Anal Chem ; 96(17): 6659-6665, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635916

RESUMO

The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , Antígeno Prostático Específico , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Masculino , Cério/química , Luminol/química
12.
Luminescence ; 39(5): e4764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684508

RESUMO

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2O2) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.


Assuntos
Técnicas Biossensoriais , Fibrina , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Fibrina/química , Fibrina/análise , Humanos , DNA Catalítico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Limite de Detecção , Luminol/química , Quadruplex G
13.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563766

RESUMO

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Medições Luminescentes/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Glicemia/análise , Tecnologia sem Fio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Luminol/química
14.
Talanta ; 273: 125867, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447340

RESUMO

The traditional luminol electrochemiluminescence (ECL) sensing suffers from low signal response and instability issues. Here, an Au/ZnCuS double-enhanced g-C3N4-supported luminol ECL aptasensor is constructed for the sensitive detection of human mucin 1 (MUC1). In this platform, g-C3N4 of a large specific surface area is beneficial to load more luminol illuminants. Au nanoparticles promote the decomposition of H2O2 coreactants to generate more reactive oxygen (•OH and O2•-) intermediates, while ZnCuS can immobilize the aptamer and simultaneously catalyze H2O2 decomposition, realizing the double-wing signal amplification. Under optimal conditions, this sensor shows a good detection capability within 1.0 × 10-4-1.0 × 103 ng mL-1 and a low detection limit of 5.0 × 10-5 ng mL-1, as well as ideal stability, selectivity, and reproducibility. This double-enhanced aptasensor highlights a new signal-enhancement approach for early biomarker detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Humanos , Luminol , Ouro , Peróxido de Hidrogênio , Mucina-1 , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Medições Luminescentes , Limite de Detecção
15.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540791

RESUMO

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells. The maximum cytostatic effect during long-term incubation for five days with HeLa and K562 cells was demonstrated by the propionic esters of the steroids: DHEA 3-propionate and 5-AED 3,17-dipropionate. These compounds stimulated the growth of normal Wi-38 cells by 30-50%, which indicates their cytoprotective properties toward noncancerous cells. The synthesized steroid derivatives exhibited antioxidant activity by reducing the production of reactive oxygen species (ROS) by peripheral blood mononuclear cells from healthy volunteers, as demonstrated in a luminol-stimulated chemiluminescence assay. The highest antioxidant effects were shown for the propionate ester of the steroid DHEA. DHEA 3-propionate inhibited luminol-stimulated chemiluminescence by 73% compared to the control, DHEA, which inhibited it only by 15%. These data show the promise of propionic substituents at 3-C and 17-C in steroid molecules for the creation of immunostimulatory and cytoprotective substances with antioxidant properties.


Assuntos
Androstenodiol , Desidroepiandrosterona , Humanos , Desidroepiandrosterona/farmacologia , Luminol , Leucócitos Mononucleares , Voluntários Saudáveis , Células K562 , Luminescência , Propionatos , Esteroides
16.
ACS Sens ; 9(4): 1992-1999, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38536770

RESUMO

The construction of assays is capable of accurately detecting cytokeratin-19 (CYFRA 21-1), which is critical for the rapid diagnosis of nonsmall cell lung cancer. In this work, a novel electrochemiluminescence (ECL) immunosensor based on the co-reaction promotion of luminol@Au@Ni-Co nanocages (NCs) as ECL probe by Ti3C2Tx MXene@TiO2-MoS2 hybrids as co-reaction accelerator was proposed to detect CYFRA 21-1. Ni-Co NCs, as a derivative of Prussian blue analogs, can be loaded with large quantities of Au NPs, luminol, and CYFRA 21-1 secondary antibodies due to their high specific surface area. To further improve the sensitivity of the developed ECL immunosensor, Ti3C2Tx MXene@TiO2-MoS2 hybrids were prepared by in situ growth of TiO2 nanosheets on highly conductive Ti3C2Tx MXene, and MoS2 was homogeneously grown on Ti3C2Tx MXene@TiO2 surfaces by the hydrothermal method. Ti3C2Tx MXene@TiO2-MoS2 hybrids possess excellent catalytic performance on the electro-redox of H2O2 generating more O2·- and obtaining optimal ECL intensity of the luminol/H2O2 system. Under the appropriate experimental conditions, the quantitative detection range of CYFRA 21-1 was from 0.1 pg mL-1 to 100 ng mL-1, and the limit of detection (LOD) was 0.046 pg mL-1. The present sensor has a lower LOD with a wider linear range, which provides a new analytical assay for the early diagnosis of small-cell-type lung cancer labels.


Assuntos
Antígenos de Neoplasias , Técnicas Biossensoriais , Dissulfetos , Técnicas Eletroquímicas , Ouro , Queratina-19 , Medições Luminescentes , Luminol , Molibdênio , Titânio , Queratina-19/sangue , Queratina-19/imunologia , Titânio/química , Luminol/química , Molibdênio/química , Ouro/química , Antígenos de Neoplasias/imunologia , Técnicas Eletroquímicas/métodos , Humanos , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Imunoensaio/métodos , Dissulfetos/química , Limite de Detecção , Níquel/química , Cobalto/química , Nanopartículas Metálicas/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
17.
Sci Justice ; 64(2): 151-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431372

RESUMO

Good laboratory practice minimizes the biological hazard posed by potentially infectious casework samples. In certain scenarios, when the casework sample is contaminated with highly contagious pathogens, additional safety procedures such as disinfection might be advised. It was previously proven that ozone gas treatment does not hamper STR analysis, but there is no data on how the disinfection affects other steps of the forensic analysis. In this study, we aimed to assess the interference of ozone disinfection with forensic tests used to identify biological stains. A dilution series of blood, saliva, and semen samples were pipetted onto cotton fabric and let completely dry. Half of the samples were subjected to ozone treatment, while the rest served as controls. All the samples were tested with specific lateral flow immunochromatographic assays and for specific RNA markers with quantitative real-time PCR. Additionally, luminol test was carried out on blood spots, Phadebas® Amylase Test on saliva stains, and semen stains were examined with STK Lab kit and light microscope following Christmas Tree or Hematoxylin-Eosin staining. Ozone treatment had no detrimental effect on the microscopic identification of sperm cells. Undiluted blood samples were detected with luminol and immunoassay, but at higher dilution, the sensitivity of the test decreased after disinfection. The same decrease in sensitivity was observed in the detection of semen stains using STK Lab kit from STK® Sperm Tracker, and in the case of the immunoassay specific for prostate-specific antigen (PSA). Ozone treatment almost completely inhibited the enzymatic activity of amylase. The sensitivity of antibody-based detection of amylase was also greatly reduced. RNA markers showed degradation but remained detectable in blood and semen samples after incubation in the presence of ozone. In saliva, the higher Ct values of the mRNA markers were close to the detection limit, even before ozone treatment.


Assuntos
Manchas de Sangue , Saliva , Humanos , Masculino , Saliva/química , Sêmen , Corantes/análise , Luminol/análise , Desinfecção , Amilases/análise , RNA Mensageiro/análise , Coloração e Rotulagem , Medicina Legal/métodos
18.
ACS Sens ; 9(2): 1023-1030, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38353664

RESUMO

The development of highly sensitive and selective analytical approaches for monitoring enzymatic activity is critical for disease diagnosis and biomedical research. Herein, we develop an exogenous co-reactant-free electrochemiluminescence (ECL) biosensor for the ratiometric measurement of α-glucosidase (α-Glu) based on a zeolitic imidazolate framework (ZIF-67)-regulated pyrene-based hydrogen-bonded organic framework (HOF-101). Target α-Glu can hydrolyze maltose to α-d-glucose, which can subsequently react with GOx to produce gluconic acid. The resultant gluconic acid can dissolve ZIF-67, leading to the recovery of the HOF-101 cathodic ECL signal and the decrease of the luminol anodic ECL signal. The long-range ordered structure of HOF-101 can speed up charge transfer, resulting in a stable and strong cathodic ECL signal. Moreover, ZIF-67 can not only efficiently quench the ECL signal of HOF-101 due to ECL resonance energy transfer between HOF-101 and ZIF-67 as well as the steric hindrance effect of ZIF-67 but also enhance the anodic ECL emission of luminol in dissolved O2 system because of its ordered and porous crystalline structure and the atomically dispersed Co2+. Notably, HOF-101 possesses a higher ECL efficiency (32.22%) compared with the Ru(bpy)32+ standard. Importantly, this ratiometric ECL biosensor shows high sensitivity (a detection limit of 0.19 U L-1) and a broad linear range (0.2-50 U L-1). This biosensor can efficiently eliminate systematic errors and enhance detection reliability without the involvement of exogenous co-reactants, and it displays good assay performance in human serum samples, holding great promise in biomedical research studies.


Assuntos
Técnicas Biossensoriais , Gluconatos , alfa-Glucosidases , Humanos , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Luminol , Técnicas Biossensoriais/métodos
19.
Anal Chem ; 96(8): 3655-3661, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362869

RESUMO

Chemiluminescence is a powerful analytical technique with many advantages, while aptamers are well-known as good molecular recognition units. However, many aptamer-based chemiluminescence assays employed interface sensing, which often needed several immobilization, separation, and washing steps. To minimize the risks of contamination and false-positive, we for the first time proposed a photocatalytic aptamer chemiluminescent system for a homogeneous, label-free, generic assay of small molecules. After binding to a DNA aptamer, thioflavin T has a unique photocatalytic oxidase activity to activate the system's luminol chemiluminescence. Then, the specific binding between the aptamer and target molecules will compete with the above process. Therefore, we can realize the efficient assay of different analytes including estradiol and adenosine. Such a homogeneous chemiluminescent system allowed a direct assay of small molecules with limits of detection in a nM level. Several control tests were carried out to avoid possible false-positive results, which were originated from the interactions between analytes and sensing interfaces previously. This homogeneous chemiluminescent system provides a useful strategy to reliably assay various analytes in the pharmacy or biology field.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Luminol/química , Adenosina
20.
Analyst ; 149(5): 1496-1501, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38315553

RESUMO

Cathodic electrochemiluminescence (ECL) of a luminol (or its analogues)-dissolved oxygen (O2) system is an ideal alternative to ECL of the traditional luminol-hydrogen peroxide (H2O2) system, which can efficiently avoid the self-decomposition of H2O2 at room temperature. However, the mechanism for the generation of cathodic ECL by the luminol (or its analogues)-O2 system is still ambiguous. Herein, we report the study of cathodic ECL generation by the L012-O2 system at a glassy carbon electrode (GCE). The types of reactive oxygen species (ROS) involved generated during ECL reactions were verified. A possible reaction mechanism for the system was proposed and the rate constants of related reactions were estimated. Furthermore, several intermediates of L012 involved in the proposed pathways were validated by electrochemistry-coupled mass spectrometry. Finally, the cathodic ECL system was successfully used for measuring the antioxidant capacity of commercial juice with Trolox as a standard.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Luminol/química , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Eletrodos , Oxigênio/química , Técnicas Eletroquímicas , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA