Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.784
Filtrar
1.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725857

RESUMO

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Assuntos
Receptores ErbB , Vesículas Extracelulares , Fatores de Transcrição Kruppel-Like , Músculo Liso Vascular , Miócitos de Músculo Liso , Estresse Mecânico , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Líquido Extracelular/metabolismo , Fenótipo , Animais , Aterosclerose/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais
2.
Gut Microbes ; 16(1): 2351532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727248

RESUMO

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , NF-kappa B , Prevotella , Insuficiência Renal Crônica , Transdução de Sinais , Receptor 4 Toll-Like , Calcificação Vascular , Animais , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Humanos , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Prevotella/metabolismo , Ratos Sprague-Dawley , Miócitos de Músculo Liso/metabolismo , Osteogênese/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fezes/microbiologia , Inflamassomos/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723872

RESUMO

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apoptose , Músculo Liso Vascular , Quercetina , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Angiotensina II/farmacologia , Camundongos , Quercetina/análogos & derivados , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
4.
Bratisl Lek Listy ; 125(6): 354-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757591

RESUMO

BACKGROUND: In the present study, two structurally similar alkaloids from trees of Cinchona genus, chloroquine and cinchonine, were examined for their vasorelaxant effects in a model of phenylephrine-induced smooth muscle contractions. METHODS: Potential mechanisms of action associated with endothelial vasorelaxant compounds, voltage-gated Ca2+ channels (LTCCs), and inositol triphosphate receptors were examined in isolated rat aortic rings. Also, an in silico approach was used to predict the activity of the two test compounds. RESULTS: Experimental results revealed that both chloroquine and cinchonine significantly decrease phenylephrine-induced smooth muscle contractions, although to a different extent. Evaluated mechanisms of action indicate that endothelium is not involved in the vasorelaxant action of the two tested alkaloids. On the other hand, voltage-gated Ca2+ channels were found to be the dominant way of action associated with the vasorelaxant action of chloroquine and cinchonine. Finally, IP3R is found to have only a small impact on the observed activity of the tested compounds. CONCLUSION: Molecular docking studies predicted that chloroquine possesses a significant activity toward a suitable model of LTCCs, while cinchonine does not. The results of the present study point to the fact that great caution should be paid while administering chloroquine to vulnerable patients, especially those with cardiovascular disorders (Tab. 3, Fig. 3, Ref. 28).


Assuntos
Canais de Cálcio , Cloroquina , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Animais , Cloroquina/farmacologia , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Vasodilatadores/farmacologia , Tono Muscular/efeitos dos fármacos , Masculino , Ratos Wistar , Simulação por Computador , Fenilefrina/farmacologia
5.
Mol Med ; 30(1): 58, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720283

RESUMO

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Assuntos
Proteínas Quinases Ativadas por AMP , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Mitofagia , Transdução de Sinais , Calcificação Vascular , Animais , Mitofagia/efeitos dos fármacos , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Exenatida/farmacologia , Exenatida/uso terapêutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
FASEB J ; 38(9): e23637, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720403

RESUMO

Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκß signaling. Interestingly, despite producing IL-1ß, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1ß signaling receptor. Treatment of VSMCs with exogenous IL-1ß led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκß. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκß translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1ß is a key player in downregulating MYOCARDIN via the NFκß signaling pathway.


Assuntos
Interleucina-1beta , Músculo Liso Vascular , Miócitos de Músculo Liso , NF-kappa B , Proteínas Nucleares , Transdução de Sinais , Transativadores , Trofoblastos , Animais , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Transativadores/metabolismo , Transativadores/genética , Ratos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Feminino , Miócitos de Músculo Liso/metabolismo , Interleucina-1beta/metabolismo , Gravidez , Técnicas de Cocultura , Ratos Sprague-Dawley , Células Cultivadas , Plasticidade Celular/fisiologia , Calponinas
7.
BMC Genomics ; 25(1): 490, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760675

RESUMO

BACKGROUND: Ruptured atherosclerotic plaques often precipitate severe ischemic events, such as stroke and myocardial infarction. Unraveling the intricate molecular mechanisms governing vascular smooth muscle cell (VSMC) behavior in plaque stabilization remains a formidable challenge. METHODS: In this study, we leveraged single-cell and transcriptomic datasets from atherosclerotic plaques retrieved from the gene expression omnibus (GEO) database. Employing a combination of single-cell population differential analysis, weighted gene co-expression network analysis (WGCNA), and transcriptome differential analysis techniques, we identified specific genes steering the transformation of VSMCs in atherosclerotic plaques. Diagnostic models were developed and validated through gene intersection, utilizing the least absolute shrinkage and selection operator (LASSO) and random forest (RF) methods. Nomograms for plaque assessment were constructed. Tissue localization and expression validation were performed on specimens from animal models, utilizing immunofluorescence co-localization, western blot, and reverse-transcription quantitative-polymerase chain reaction (RT-qPCR). Various online databases were harnessed to predict transcription factors (TFs) and their interacting compounds, with determination of the cell-specific localization of TF expression using single-cell data. RESULTS: Following rigorous quality control procedures, we obtained a total of 40,953 cells, with 6,261 representing VSMCs. The VSMC population was subsequently clustered into 5 distinct subpopulations. Analyzing inter-subpopulation cellular communication, we focused on the SMC2 and SMC5 subpopulations. Single-cell subpopulation and WGCNA analyses revealed significant module enrichments, notably in collagen-containing extracellular matrix and cell-substrate junctions. Insulin-like growth factor binding protein 4 (IGFBP4), apolipoprotein E (APOE), and cathepsin C (CTSC) were identified as potential diagnostic markers for early and advanced plaques. Notably, gene expression pattern analysis suggested that IGFBP4 might serve as a protective gene, a hypothesis validated through tissue localization and expression analysis. Finally, we predicted TFs capable of binding to IGFBP4, with Krüppel-like family 15 (KLF15) emerging as a prominent candidate showing relative specificity within smooth muscle cells. Predictions about compounds associated with affecting KLF15 expression were also made. CONCLUSION: Our study established a plaque diagnostic and assessment model and analyzed the molecular interaction mechanisms of smooth muscle cells within plaques. Further analysis revealed that the transcription factor KLF15 may regulate the biological behaviors of smooth muscle cells through the KLF15/IGFBP4 axis, thereby influencing the stability of advanced plaques via modulation of the PI3K-AKT signaling pathway. This could potentially serve as a target for plaque stability assessment and therapy, thus driving advancements in the management and treatment of atherosclerotic plaques.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Fatores de Transcrição Kruppel-Like , Miócitos de Músculo Liso , Placa Aterosclerótica , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Miócitos de Músculo Liso/metabolismo , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Humanos , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Redes Reguladoras de Genes , Masculino , Multiômica
8.
FASEB J ; 38(9): e23645, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703043

RESUMO

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Assuntos
Dissecção Aórtica , Quimiocina CX3CL1 , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Transdução de Sinais , Fator de Transcrição RelA , Remodelação Vascular , Animais , Camundongos , Masculino , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aminopropionitrilo/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
9.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690903

RESUMO

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Assuntos
Hipertensão , Músculo Liso Vascular , NADPH Oxidase 1 , Isomerases de Dissulfetos de Proteínas , Ratos Endogâmicos SHR , Regulação para Cima , Animais , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Hipertensão/fisiopatologia , Hipertensão/genética , Hipertensão/metabolismo , Ratos , Músculo Liso Vascular/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratos Wistar , Transcrição Gênica
10.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718134

RESUMO

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Assuntos
Prótese Vascular , Colágeno , Células-Tronco Pluripotentes Induzidas , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Colágeno/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Nus , Modelos Animais de Doenças , Ratos , Bioengenharia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Edição de Genes , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino
11.
Lasers Med Sci ; 39(1): 122, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703271

RESUMO

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.


Assuntos
Lasers de Corante , Animais , Ratos , Masculino , Lasers de Corante/uso terapêutico , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/efeitos da radiação , Vasodilatação/efeitos da radiação , Vasodilatação/fisiologia , Temperatura , Músculo Liso Vascular/efeitos da radiação , Músculo Liso Vascular/fisiologia , Células Endoteliais/efeitos da radiação , Células Endoteliais/fisiologia , Vasoconstrição/efeitos da radiação , Vasoconstrição/fisiologia , Endotélio Vascular/efeitos da radiação , Ratos Wistar
12.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691302

RESUMO

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Janus Quinases , Síndrome Metabólica , Estresse Oxidativo , Transdução de Sinais , Ubiquitina Tiolesterase , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Janus Quinases/metabolismo , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/patologia , Hipertensão/enzimologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/enzimologia , Pressão Sanguínea/efeitos dos fármacos , Progressão da Doença , Remodelação Vascular/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Regulação da Expressão Gênica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Ratos
13.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691303

RESUMO

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Lesões das Artérias Carótidas , Movimento Celular , Proliferação de Células , Diabetes Mellitus Experimental , Proteínas de Membrana , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Proteína ADAM10/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/enzimologia , Movimento Celular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/enzimologia , Proliferação de Células/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Cultivadas , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/enzimologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Modelos Animais de Doenças , Ratos , Reestenose Coronária/patologia , Reestenose Coronária/etiologia , Reestenose Coronária/metabolismo , Reestenose Coronária/prevenção & controle
14.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727271

RESUMO

Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.


Assuntos
Angiotensina II , Aneurisma da Aorta Torácica , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Angiotensina II/farmacologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Camundongos Endogâmicos C57BL , Masculino , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças
15.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581667

RESUMO

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Assuntos
Diabetes Mellitus , Insulinas , Animais , Camundongos , Anoctamina-1/metabolismo , Artérias/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Receptor de Insulina/metabolismo
16.
J Ethnopharmacol ; 328: 118125, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561055

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a Chinese medicine with a long history of therapeutic application. It is widely used in treating atherosclerosis (AS) in Chinese medicine theory and clinical practice. However, the mechanism of HLJDD in treating AS remains unclear. AIM OF THE STUDY: To investigate the efficacy and mechanism of HLJDD in treating AS. MATERIALS AND METHODS: AS was induced on high-fat diet-fed ApoE-/- mice, with the aorta pathological changes evaluated with lipid content and plaque progression. In vitro, foam cells were induced by subjecting primary mouse aortic vascular smooth muscle cells (VSMCs) to oxLDL incubation. After HLJDD intervention, VSMCs were assessed with lipid stack, apoptosis, oxidative stress, and the expression of foam cell markers. The effects of P2RY12 were tested by adopting clopidogrel hydrogen sulfate (CDL) in vivo and transfecting P2RY12 over-expressive plasmid in vitro. Autophagy was inhibited by Chloroquine or transfecting siRNA targeting ATG7 (siATG7). The mechanism of HLJDD treating atherosclerosis was explored using network pharmacology and validated with molecular docking and co-immunoprecipitation. RESULTS: HLJDD exhibited a dose-dependent reduction in lipid deposition, collagen loss, and necrosis within plaques. It also reversed lipid accumulation and down-regulated the expression of foam cell markers. P2RY12 inhibition alleviated AS, while P2RY12 overexpression enhanced foam cell formation and blocked the therapeutic effects of HLJDD. Network pharmacological analysis suggested that HLJDD might mediate PI3K/AKT signaling pathway-induced autophagy. P2RY12 overexpression also impaired autophagy. Similarly, inhibiting autophagy counteracted the effect of CDL, exacerbated AS in vivo, and promoted foam cell formation in vitro. However, HLJDD treatment mitigated these detrimental effects by suppressing the PI3K/AKT signaling pathway. Immunofluorescence and molecular docking revealed a high affinity between P2RY12 and PIK3CB, while co-immunoprecipitation assays illustrated their interaction. CONCLUSIONS: HLJDD inhibited AS in vivo and foam cell formation in vitro by restoring P2RY12/PI3K/AKT signaling pathway-suppressed autophagy. This study is the first to reveal an interaction between P2RY12 and PI3K3CB.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Camundongos , Animais , Células Espumosas , Músculo Liso Vascular , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Autofagia
17.
Int J Biol Sci ; 20(6): 2092-2110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617538

RESUMO

Development of non-surgical treatment of human abdominal aortic aneurysm (AAA) has clinical significance. Colchicine emerges as an effective therapeutic regimen in cardiovascular diseases. Yet, whether colchicine slows AAA growth remain controversy. Here, we demonstrated that daily intragastric administration of low-dose colchicine blocked AAA formation, prevented vascular smooth muscle cell (SMC) phenotype switching and apoptosis, and vascular inflammation in both peri-aortic CaPO4 injury and subcutaneous angiotensin-II infusion induced experimental AAA mice models. Mechanistically, colchicine increased global mRNA stability by inhibiting the METTL14/YTHDC1-mediated m6A modification, resulting in increased sclerostin (SOST) expression and consequent inactivation of the WNT/ß-catenin signaling pathway in vascular SMCs from mouse AAA lesions and in cultured human aortic SMCs. Moreover, human and mouse AAA lesions all showed increased m6A methylation, decreased SOST expression, and skewed synthetic SMC de-differentiation phenotype, compared to those without AAA. This study uncovers a novel mechanism of colchicine in slowing AAA development by using the METTL14/SOST/WNT/ß-catenin axis to control vascular SMC homeostasis in mouse aortic vessels and in human aortic SMCs. Therefore, use of colchicine may benefit AAA patients in clinical practice.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Humanos , Animais , Camundongos , Aneurisma da Aorta Abdominal/tratamento farmacológico , Homeostase , Aorta , Colchicina/uso terapêutico
18.
Biochem Biophys Res Commun ; 710: 149863, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579535

RESUMO

Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Calcificação Vascular/genética , Macrófagos , Osteogênese , Fenótipo , Miócitos de Músculo Liso
20.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597937

RESUMO

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Humanos , Camundongos , Animais , Suínos , RNA Longo não Codificante/genética , Músculo Liso Vascular , Fator 2 Relacionado a NF-E2/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA