Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Can Respir J ; 2022: 8437348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091328

RESUMO

Introduction: Vascular smooth muscle cells (VSMCs) are highly involved in airway vascular remodeling in asthma. Objectives: This study aimed to investigate the mechanisms underlying the effects of a disintegrin and metalloproteinase-33 (ADAM33) gene on the migration capacity and inflammatory cytokine secretion of VSMCs. Methods: Human aortic smooth muscle cells (HASMCs) were transfected with lentiviral vectors carrying short hairpin RNA (shRNA) targeting ADAM33 or negative control vectors. The migration capacity of HASMCs was evaluated by a transwell assay. The levels of secreted inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect mRNA and protein expression levels. Results: Silencing of ADAM33 significantly inhibited the migration of HASMCs. The expression of tumor necrosis factor alpha (TNF-α) in the supernatant of HASMCs was decreased, while that of interferon gamma (IFN-γ) was increased after the transfection of shRNA targeting ADAM33. Insufficient ADAM33 expression also suppressed the expression levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (AKT), phospho-mammalian target of rapamycin (mTOR), Rho-associated protein kinases, phospho-forkhead box protein O1 (FOXO1), and cyclin D1, but it did not affect the levels of AKT, mTOR, or Rho. Conclusion: Silencing of the ADAM33 gene inhibited HASMC migration and regulated inflammatory cytokine secretion via targeting the PI3K/AKT/mTOR pathway and its downstream signaling. These data contribute to a better understanding of the regulatory mechanisms of airway vascular remodeling in asthma.


Assuntos
Proteínas ADAM , Remodelação das Vias Aéreas , Asma , Inativação Gênica , Músculo Liso Vascular , Remodelação Vascular , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Remodelação das Vias Aéreas/genética , Remodelação das Vias Aéreas/imunologia , Asma/genética , Asma/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Inativação Gênica/fisiologia , Humanos , Músculo Liso Vascular/imunologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Remodelação Vascular/genética , Remodelação Vascular/imunologia
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269553

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.


Assuntos
Músculo Liso Vascular/patologia , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Animais , Metabolismo Energético , Humanos , Músculo Liso Vascular/imunologia , Hipertensão Arterial Pulmonar/imunologia , Artéria Pulmonar/imunologia , Transdução de Sinais , Remodelação Vascular
3.
Microvasc Res ; 140: 104280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856183

RESUMO

Hexarelin, a synthetic growth hormone-releasing peptide, is shown to be protective in cardiovascular diseases such as myocardial infraction and atherosclerosis. However, the functional role of hexarelin in abdominal aortic aneurysm (AAA) remains undefined. The present study determined the effect of hexarelin administration (200 µg/kg twice per day) in a mouse model of elastase-induced abdominal aortic aneurysm. Echocardiography and in situ pictures showed hexarelin decreased infrarenal aorta diameter. Histology staining showed elastin degradation was improved in hexarelin-treated group. Hexarelin rescued smooth muscle cell contractile phenotype with increased α-SMA and decreased MMP2. Furthermore, hexarelin inhibited inflammatory cell infiltration, NLRP3 inflammasome activation and IL-18 production. Particularly, hexarelin suppressed NF-κB signaling pathway which is a key initiator of inflammatory response. These results demonstrated that hexarelin attenuated AAA development by inhibiting SMC phenotype switch and NF-κB signaling mediated inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Aneurisma da Aorta Abdominal/prevenção & controle , Plasticidade Celular/efeitos dos fármacos , Inflamassomos/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Oligopeptídeos/farmacologia , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/imunologia , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Transdução de Sinais , Remodelação Vascular/efeitos dos fármacos
4.
Oxid Med Cell Longev ; 2021: 8321400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745424

RESUMO

Abnormal vascular smooth muscle cell (VSMC) proliferation has an important role in the pathogenesis of both atherosclerosis restenosis and hypertension. Vascular endothelial growth factor (VEGF) has been shown to stimulate VSMC proliferation. In addition, angiogenesis is one of the hallmarks of cancerous growth. VEGF is the key modulator for the initial stages of angiogenesis that acts through the endothelial-specific receptor tyrosine kinases (VEGFRs). VEGFR-2 blockage is a good approach for suppression of angiogenesis. In order to discover novel VEGFR-2 TK inhibitors, we have designed and synthesized three new series of pyridine-containing compounds. The new compounds were all screened against a panel of three cell lines (HepG-2, HCT-116, and MCF-7). Promising results encouraged us to additionally evaluate the most active members for their in vitro VEGFR-2 inhibitory effect. Compound 7a, which is the most potent candidate, revealed a significant increase in caspase-3 level by 7.80-fold when compared to the control. In addition, Bax and Bcl-2 concentration levels showed an increase in the proapoptotic protein Bax (261.4 Pg/ml) and a decrease of the antiapoptotic protein Bcl-2 (1.25 Pg/ml) compared to the untreated cells. Furthermore, compound 7a arrested the cell cycle in the G2/M phase with induction of apoptosis. The immunomodulatory effect of compound 7a, the most active member, showed a reduction in TNF-α by 87%. Also, compound 7a caused a potent inhibitory effect on smooth muscle proliferation. Docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Desenho de Fármacos , Fatores Imunológicos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Apoptose , Ciclo Celular , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia
5.
Cardiovasc Res ; 117(13): 2624-2638, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34343276

RESUMO

Cardiac allograft vasculopathy (CAV) is a pathologic immune-mediated remodelling of the vasculature in transplanted hearts and, by impairing perfusion, is the major cause of late graft loss. Although best understood following cardiac transplantation, similar forms of allograft vasculopathy occur in other vascularized organ grafts and some features of CAV may be shared with other immune-mediated vasculopathies. Here, we describe the incidence and diagnosis, the nature of the vascular remodelling, immune and non-immune contributions to pathogenesis, current therapies, and future areas of research in CAV.


Assuntos
Doença da Artéria Coronariana/imunologia , Vasos Coronários/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Imunidade Adaptativa , Animais , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Imunidade Inata , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fatores de Risco , Transdução de Sinais , Resultado do Tratamento , Remodelação Vascular
6.
J Cell Mol Med ; 25(16): 8028-8038, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169652

RESUMO

Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose/patologia , Inflamação/patologia , Lipoproteínas LDL/toxicidade , MicroRNAs/genética , Músculo Liso Vascular/patologia , RNA Circular/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Proteína 3 Associada à Membrana da Vesícula/genética
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066088

RESUMO

Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMß2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.


Assuntos
Aterosclerose/patologia , Complemento C3/metabolismo , Hiperlipoproteinemia Tipo II/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteoma/metabolismo , Adulto , Aterosclerose/imunologia , Aterosclerose/metabolismo , Estudos de Casos e Controles , Adesão Celular , Células Cultivadas , Feminino , Humanos , Hiperlipoproteinemia Tipo II/imunologia , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Proteoma/análise , Remodelação Vascular , Cicatrização , Adulto Jovem
8.
Commun Biol ; 4(1): 611, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021256

RESUMO

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Assuntos
Aterosclerose/patologia , Senescência Celular , Inflamação/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Telômero/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Neointima/etiologia , Neointima/metabolismo , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
9.
Cardiovasc Res ; 117(3): 930-941, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32243494

RESUMO

AIMS: Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS: Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1ß-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated ß cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS: Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.


Assuntos
Transdiferenciação Celular , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Insuficiência Renal Crônica/sangue , Uromodulina/sangue , Calcificação Vascular/prevenção & controle , Adulto , Idoso , Animais , Aorta/imunologia , Aorta/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese , Citocinas/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Osteogênese , Fenótipo , Carbamilação de Proteínas , Insuficiência Renal Crônica/imunologia , Transdução de Sinais , Uromodulina/genética , Uromodulina/farmacologia , Calcificação Vascular/sangue , Calcificação Vascular/imunologia , Adulto Jovem
10.
Arterioscler Thromb Vasc Biol ; 41(2): 796-807, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380173

RESUMO

OBJECTIVE: The aim of this study was to unravel mechanisms whereby deficiency of the transcription factor Id3 (inhibitor of differentiation 3) leads to metabolic dysfunction in visceral obesity. We investigated the impact of loss of Id3 on hyaluronic acid (HA) production by the 3 HAS isoenzymes (HA synthases; -1, -2, and -3) and on obesity-induced adipose tissue (AT) accumulation of proinflammatory B cells. Approach and Results: Male Id3-/- mice and respective wild-type littermate controls were fed a 60% high-fat diet for 4 weeks. An increase in inflammatory B2 cells was detected in Id3-/- epididymal AT. HA accumulated in epididymal AT of high-fat diet-fed Id3-/- mice and circulating levels of HA were elevated. Has2 mRNA expression was increased in epididymal AT of Id3-/- mice. Luciferase promoter assays showed that Id3 suppressed Has2 promoter activity, while loss of Id3 stimulated Has2 promoter activity. Functionally, HA strongly promoted B2 cell adhesion in the AT and on cultured vascular smooth muscle cells of Id3-/- mice, an effect sensitive to hyaluronidase. CONCLUSIONS: Our data demonstrate that loss of Id3 increases Has2 expression in the epididymal AT, thereby promoting HA accumulation. In turn, elevated HA content promotes HA-dependent binding of B2 cells and an increase in the B2 cells in the AT, which contributes to AT inflammation.


Assuntos
Tecido Adiposo/metabolismo , Linfócitos B/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Proteínas Inibidoras de Diferenciação/metabolismo , Paniculite/metabolismo , Tecido Adiposo/imunologia , Animais , Linfócitos B/imunologia , Adesão Celular , Células Cultivadas , Técnicas de Cocultura , Dieta Hiperlipídica , Modelos Animais de Doenças , Hialuronan Sintases/genética , Proteínas Inibidoras de Diferenciação/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Paniculite/genética , Paniculite/imunologia , Fenótipo , Transdução de Sinais , Regulação para Cima
11.
Front Immunol ; 11: 599415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324416

RESUMO

The pathobiology of atherosclerotic disease requires further elucidation to discover new approaches to address its high morbidity and mortality. To date, over 17 million cardiovascular-related deaths have been reported annually, despite a multitude of surgical and nonsurgical interventions and advances in medical therapy. Existing strategies to prevent disease progression mainly focus on management of risk factors, such as hypercholesterolemia. Even with optimum current medical therapy, recurrent cardiovascular events are not uncommon in patients with atherosclerosis, and their incidence can reach 10-15% per year. Although treatments targeting inflammation are under investigation and continue to evolve, clinical breakthroughs are possible only if we deepen our understanding of vessel wall pathobiology. Vascular smooth muscle cells (VSMCs) are one of the most abundant cells in vessel walls and have emerged as key players in disease progression. New technologies, including in situ hybridization proximity ligation assays, in vivo cell fate tracing with the CreERT2-loxP system and single-cell sequencing technology with spatial resolution, broaden our understanding of the complex biology of these intriguing cells. Our knowledge of contractile and synthetic VSMC phenotype switching has expanded to include macrophage-like and even osteoblast-like VSMC phenotypes. An increasing body of data suggests that VSMCs have remarkable plasticity and play a key role in cell-to-cell crosstalk with endothelial cells and immune cells during the complex process of inflammation. These are cells that sense, interact with and influence the behavior of other cellular components of the vessel wall. It is now more obvious that VSMC plasticity and the ability to perform nonprofessional phagocytic functions are key phenomena maintaining the inflammatory state and senescent condition and actively interacting with different immune competent cells.


Assuntos
Aterosclerose/imunologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Vasculite/imunologia , Animais , Aterosclerose/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Vasculite/patologia
12.
Theranostics ; 10(23): 10712-10728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929376

RESUMO

Rationale: For intravascular stent implantation to be successful, the processes of vascular tissue repair and therapy are considered to be critical. However, the mechanisms underlying the eventual fate of vascular smooth muscle cells (VSMCs) during vascular tissue repair remains elusive. In this study, we hypothesized that M2 macrophage-derived exosomes to mediate cell-to-cell crosstalk and induce dedifferentiation phenotypes in VSMCs. Methods:In vivo, 316L bare metal stents (BMS) were implanted from the left iliac artery into the abdominal aorta of 12-week-old male Sprague-Dawley (SD) rats for 7 and 28 days. Hematoxylin and eosin (HE) were used to stain the neointimal lesions. En-face immunofluorescence staining of smooth muscle 22 alpha (SM22α) and CD68 showed the rat aorta smooth muscle cells (RASMCs) and macrophages. Immunohistochemical staining of total galactose-specific lectin 3 (MAC-2) and total chitinase 3-like 3 (YM-1) showed the total macrophages and M2 macrophages. In vitro, exosomes derived from IL-4+IL-13-treated macrophages (M2Es) were isolated by ultracentrifugation and characterized based on their specific morphology. Ki-67 staining was conducted to assess the effects of the M2Es on the proliferation of RASMCs. An atomic force microscope (AFM) was used to detect the stiffness of the VSMCs. GW4869 was used to inhibit exosome release. RNA-seq was performed to determine the mRNA profiles of the RASMCs and M2Es-treated RASMCs. Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of the mRNAs. Western blotting was used to detect the candidate protein expression levels. T-5224 was used to inhibit the DNA binding activity of AP-1 in RASMCs. Results: M2Es promote c-KIT expression and softening of nearby VSMCs, hence accelerating the vascular tissue repair process. VSMCs co-cultured in vitro with M2 macrophages presented an increased capacity for de-differentiation and softening, which was exosome dependent. In addition, the isolated M2Es helped to promote VSMC dedifferentiation and softening. Furthermore, the M2Es enhanced vascular tissue repair potency by upregulation of VSMCs c-KIT expression via activation of the c-Jun/activator protein 1 (AP-1) signaling pathway.Conclusions: The findings of this study emphasize the prominent role of M2Es during VSMC dedifferentiation and vascular tissue repair via activation of the c-Jun/AP-1 signaling pathway, which has a profound impact on the therapeutic strategies of coronary stenting techniques.


Assuntos
Doença das Coronárias/cirurgia , Procedimentos Endovasculares/instrumentação , Macrófagos/metabolismo , Músculo Liso Vascular/imunologia , Neointima/imunologia , Animais , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Doença das Coronárias/imunologia , Modelos Animais de Doenças , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Macrófagos/imunologia , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA-Seq , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/imunologia , Stents , Fator de Transcrição AP-1/metabolismo
13.
FASEB J ; 34(7): 9498-9511, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463165

RESUMO

Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies aldehydes by converting them to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress. Increased oxidative stress plays a pivotal role in abdominal aortic aneurysm (AAA) pathogenesis. Reactive oxygen species (ROS) promote degradation of the extracellular matrix (ECM) and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by an ALDH2 activator could have therapeutic potential for limiting AAA development. We hypothesized that ALDH2 deficiency could increase the risk for AAA by decreasing ROS elimination and that an ALDH2 activator could provide an alternative option for AAA treatment. The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database was used. Human aortic smooth muscle cells (HASMCs) were used for the in vitro experiments. Gene-targeted ALDH2*2 KI knock-in mice on a C57BL/6J background and apolipoprotein E knockout (ApoE KO) mice were obtained. An animal model of AAA was constructed using osmotic minipumps to deliver 1000 ng/kg/min angiotensin II (AngII) for 28 days. Patients with AAA had significantly lower ALDH2 expression levels than normal subjects. ALDH2*2 KI mice were susceptible to AngII administration, exhibiting significantly increased AAA incidence rates and increased aortic diameters. Alda-1, an ALDH2 activator, reduced AngII-induced ROS production, NF-kB activation, and apoptosis in HASMCs. Alda-1 attenuated AngII-induced aneurysm formation and decreased aortic expansion in ApoE KO mice. We concluded that ALDH2 deficiency is associated with the development of AAAs in humans and a murine disease model. ALDH2 deficiency increases susceptibility to AngII-induced AAA formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation. Alda-1 was shown to attenuate the progression of experimental AAA in a murine model.


Assuntos
Aldeído-Desidrogenase Mitocondrial/fisiologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apoptose , Inflamação/prevenção & controle , Músculo Liso Vascular/imunologia , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo , Animais , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Estresse Oxidativo
14.
Cardiovasc Res ; 116(2): 438-449, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106375

RESUMO

AIMS: Defects in efficient endothelial healing have been associated with complication of atherosclerosis such as post-angioplasty neoatherosclerosis and plaque erosion leading to thrombus formation. However, current preventive strategies do not consider re-endothelialization in their design. Here, we investigate mechanisms linking immune processes and defect in re-endothelialization. We especially evaluate if targeting phosphoinositide 3-kinase γ immune processes could restore endothelial healing and identify immune mediators responsible for these defects. METHODS AND RESULTS: Using in vivo model of endovascular injury, we showed that both ubiquitous genetic inactivation of PI3Kγ and hematopoietic cell-specific PI3Kγ deletion improved re-endothelialization and that CD4+ T-cell population drives this effect. Accordingly, absence of PI3Kγ activity correlates with a decrease in local IFNγ secretion and its downstream interferon-inducible chemokine CXCL10. CXCL10 neutralization promoted re-endothelialization in vivo as the same level than those observed in absence of PI3Kγ suggesting a role of CXCL10 in re-endothelialization defect. Using a new established ex vivo model of carotid re-endothelialization, we showed that blocking CXCL10 restore the IFNγ-induced inhibition of endothelial healing and identify smooth muscle cells as the source of CXCL10 secretion in response to Th1 cytokine. CONCLUSION: Altogether, these findings expose an unforeseen cellular cross-talk within the arterial wall whereby a PI3Kγ-dependent T-cell response leads to CXCL10 production by smooth muscle cells which in turn inhibits endothelial healing. Therefore, both PI3Kγ and the IFNγ/CXCL10 axis provide novel strategies to promote endothelial healing.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Lesões das Artérias Carótidas/enzimologia , Quimiocina CXCL10/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cicatrização , Animais , Linfócitos T CD4-Positivos/imunologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/imunologia , Lesões das Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Comunicação Parácrina , Reepitelização , Transdução de Sinais
15.
J Biomed Sci ; 26(1): 61, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470852

RESUMO

BACKGROUND: Among older adults, arterial aging is the major factor contributing to increased risk for cardiovascular disease-related morbidity and mortality. The chronic vascular inflammation that accompanies aging causes diffuse intimal-medial thickening of the arterial wall, thus increasing the vulnerability of aged vessels to vascular insults. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a biomarker for aging arteries. This integrin-binding glycoprotein, induced by angiotensin II, facilitates vascular smooth muscle cell (VSMC) proliferation and invasion in aging vasculatures. This study investigated whether MFG-E8 directly mediates the initial inflammatory responses in aged arteries or VSMCs. METHODS: A model of neointimal hyperplasia was induced in the common carotid artery (CCA) of aged mice to exacerbate age-associated vascular remodeling. Recombinant MFG-E8 (rMFG-E8) was administered to the injured artery using Pluronic gel to accentuate the effect on age-related vascular pathophysiology. The MFG-E8 level, leukocyte infiltration, and proinflammatory cell adhesion molecule (CAM) expression in the arterial wall were evaluated through immunohistochemistry. By using immunofluorescence and immunoblotting, the activation of the critical proinflammatory transcription factor nuclear factor (NF)-κB in the injured CCAs was analyzed. Immunofluorescence, immunoblotting, and quantitative real-time polymerase chain reaction were conducted using VSMCs isolated from the aortas of young and aged mice to assess NF-κB nuclear translocation, NF-κB-dependent gene expression, and cell proliferation. The extent of intimal-medial thickening in the injured vessels was analyzed morphometrically. Finally, Transwell migration assay was used to examine VSMC migration. RESULTS: Endogenous MFG-E8 expression in aged CCAs was significantly induced by ligation injury. Aged CCAs treated with rMFG-E8 exhibited increased leukocyte extravasation, CAM expression, and considerably increased NF-κB activation induced by rMFG-E8 in the ligated vessels. Exposure of early passage VSMCs from aged aortas to rMFG-E8 substantially increased NF-κB activation, proinflammatory gene expression, and cell proliferation. However, rMFG-E8 attenuated VSMC migration. CONCLUSIONS: MFG-E8 promoted the proinflammatory phenotypic shift of aged VSMCs and arteries, rendering the vasculature prone to vascular diseases. MFG-E8 may constitute a novel therapeutic target for retarding the aging processes in such vessels.


Assuntos
Envelhecimento/genética , Antígenos de Superfície/genética , Artérias/fisiologia , Inflamação/genética , Proteínas do Leite/genética , Músculo Liso Vascular/imunologia , Animais , Antígenos de Superfície/metabolismo , Inflamação/fisiopatologia , Camundongos , Proteínas do Leite/metabolismo , Músculo Liso Vascular/metabolismo , Fenótipo , Proteínas Recombinantes
16.
Eur Rev Med Pharmacol Sci ; 23(11): 4988-4995, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31210335

RESUMO

OBJECTIVE: This study aims to explore whether the inhibitory role of metformin could inhibit LPS-induced inflammatory response in vascular smooth muscle cells (VSMCs) and its underlying mechanism. MATERIALS AND METHODS: VSMCs were extracted from aorta of Sprague Dawley rats. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to detect VSMCs viability after treatment with different concentrations of metformin. Levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in VSMCs were detected by ELISA (enzyme-linked immunosorbent assay) and qRT-PCR (quantitative Real time-polymerase chain reaction). Protein and mRNA levels of toll like receptor 4 (TLR4) and peroxisome proliferators activated receptor γ (PPAR-γ) in VSMCs were detected by Western blot and qRT-PCR, respectively. Finally, VSMCs were treated with the PPAR-γ antagonist GW9662 and inflammatory indicators in cells were detected. RESULTS: No significant difference in VSMCs viability was found after 0-2 mM metformin treatment or 500 µg/L LPS induction for 24 h. After 500 µg/L LPS induction in VSMCs for 24 h, levels of MCP-1, TNF-α and IL-6 were remarkably elevated. Both mRNA and protein levels of TLR4 in VSMCs were upregulated after 500 µg/L LPS induction for 24 h, which were remarkably reversed by the treatment of different concentrations of metformin. Knockdown of TLR4 remarkably inhibited LPS-induced inflammatory response in VSMCs, manifesting as decreased levels of MCP1, TNF-α and IL-6, which were further downregulated after combination treatment of TLR4 knockdown and 20 mM metformin. Furthermore, both mRNA and protein levels of PPAR-γ in VSMCs were downregulated after 500 µg/L LPS induction for 24 h, which were remarkably reversed by the treatment of different concentrations of metformin. GW9662 treatment resulted in elevated expressions of MCP-1, TNF-α and IL-6, which were reversed by metformin treatment. CONCLUSIONS: Metformin can effectively inhibit the mRNA and protein expressions of IL-6, MCP-1, and TNF-α in LPS-induced VSMCs. The anti-inflammatory effects of metformin inhibit the inflammatory response through downregulating rely on the downregulation of TLR4 expression and upregulation ofng PPAR-γ activity.


Assuntos
Metformina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Células Cultivadas , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/imunologia , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Metformina/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , PPAR gama/metabolismo , Cultura Primária de Células , Ratos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
17.
Front Immunol ; 10: 1101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164888

RESUMO

Vascular smooth muscle cells (VSMCs) constitute the major cells in the media layer of arteries, and are critical to maintain the integrity of the arterial wall. They participate in arterial wall remodeling, and play important roles in atherosclerosis throughout all stages of the disease. Studies demonstrate that VSMCs can adopt numerous phenotypes depending on inputs from endothelial cells (ECs) of the intima, resident cells of the adventitia, circulating immune cells, hormones, and plasma lipoproteins. This plasticity allows them to perform multiple tasks in physiology and disease. In this minireview, we focus on a previously underappreciated activity of VSMCs, i.e., their impact on atherosclerosis immunity via formation of artery tertiary lymphoid organs (ATLOs).


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Suscetibilidade a Doenças , Imunidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Adventícia/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
18.
Immunopharmacol Immunotoxicol ; 41(3): 446-454, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31124391

RESUMO

Context: Atherosclerosis is a chronic inflammatory disease in which the plaques were built up inside of the artery. Interleukin-8 (IL-8, CXCL8) is an inflammatory factor, known to play an important role in the development of atherosclerosis. G31P is an antagonist of the IL-8 receptor, which plays roles in vascular smooth muscle cell (VSMC) proliferation and migration. Objective: This study is to investigate the therapeutic effect of G31P on atherosclerosis through a mouse model. Materials and methods: A mouse model of atherosclerosis was generated through feeding the ApoE-/- mice with high fat diet for 12 weeks. G31P was injected subcutaneously into the mice. The levels of keratinocyte chemoattractant (KC), CXCR2, TNF-α, and IFN-γ were analyzed through ELISA. The expressions of MMP-2, MMP-9, PCNA, and Mef2a in aortic tissues were detected through RT-qPCR. In A7r5 cells, the levels of p-ERK, ROCK1, and ROCK2 were analyzed by western blot. Intracellular calcium levels were measured through Fluo-3 AM assay. Results and disccussion: G31P suppressed the abnormal lipid profile and decreased the levels of KC, MMP-2, MMP-9, PCNA, and Mef2a in a mouse model of atherosclerosis. In addition, G31P also inhibited the expressions of p-ERK, ROCK1, ROCK2, and decreased the calcium concentrations in A7r5 cells. Conclusions: These findings indicate the potential therapeutic effects of G31P in suppressing the development of atherosclerosis by antagonizing the IL-8 receptor. G31P inhibits the proliferation and migration of VSMCs through regulating the Rho-kinase, ERK, and calcium-dependent pathways.


Assuntos
Aorta/imunologia , Aterosclerose/tratamento farmacológico , Interleucina-8/farmacologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Fragmentos de Peptídeos/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/imunologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/imunologia
19.
Biochem Biophys Res Commun ; 513(1): 41-48, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30935684

RESUMO

P300/CBP-associated factor (PCAF) regulates vascular inflammation. This study was to explore the effect of PCAF on the proliferation and migrationof vascular smooth muscle cells (VSMCs) and neointimal hyperplasia in balloon-injured rat carotid artery. Downregulation of PCAF remarkably suppressed VSMCs proliferation and migration induced by lipopolysaccharide, and also significantly inhibit the nuclear translocation of nuclear factor-kappaB p65. Meanwhile, downregulation of PCAF inhibited the mRNA expression of tumor necrosis factor-α and interleukin-6, and also the levels in culture supernatants. Moreover, downregulation of PCAF profoundly reduced the intima area and the ratio of intima area to media area in balloon-injured rat carotid artery. In addition, the expression of PCNA and NF-κB p65 in intima were decreased by downregulation of PCAF. These results highlight that PCAF may be a potential target for prevention and treatment of neointimal hyperplasia and restenosis after angioplasty.


Assuntos
Inflamação/imunologia , Músculo Liso Vascular/imunologia , Fator de Transcrição RelA/imunologia , Fatores de Transcrição de p300-CBP/genética , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Inflamação/genética , Inflamação/patologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Ratos Sprague-Dawley , Fator de Transcrição RelA/genética , Túnica Íntima/imunologia , Túnica Íntima/patologia , Fatores de Transcrição de p300-CBP/imunologia
20.
Immunity ; 50(4): 941-954, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995508

RESUMO

Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1ß (IL-1ß), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.


Assuntos
Doenças Cardiovasculares/imunologia , Citocinas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Colesterol/metabolismo , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Citocinas/uso terapêutico , Progressão da Doença , Células Espumosas/imunologia , Células Espumosas/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1beta/antagonistas & inibidores , Camundongos Knockout , Modelos Imunológicos , Músculo Liso Vascular/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais , Suínos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA