Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
Int Immunopharmacol ; 140: 112921, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39133953

RESUMO

Effective treatment of myocardial ischemia-reperfusion (MIR) injury remains an unmet clinical need. Cardiomyocyte apoptosis is common at this stage and poses a significant risk. Corylin, a flavonoid compound extracted from Psoralea corylifolia L., has been shown to have anti-inflammatory, anticancer, and antiatherosclerotic properties. However, whether and how corylin affects MIR injury remain unclear. In this study, we explored the mechanism of corylin as a potent therapeutic agent for MI/R injury, using a left anterior descending (LAD) coronary artery ligation and oxygen-glucose deprivation and reperfusion (OGD/R) model in vivo and in vitro. TUNEL, Annexin-V/PI double staining,Ki67 immunohistochemistry, western blot analysis, and immunofluorescence were used to validate cell apoptosis level and Raf-1/ASK1 complex activity. The interaction between corylin and Raf-1/ASK1 complex was detected using molecular docking, corylin-Raf-1 binding assays, and coimmunoprecipitation (Co-IP). Moreover, TTC staining, echocardiography, HE staining, Masson trichrome staining and serological testing were performed to assess the cardioprotective effects of corylin in vivo. These findings showed that corylin reduces MIR injury-induced cardiomyocyte apoptosis and improves cardiac function. Mechanistically, corylin can interact with Raf-1 and promote the formation of the Raf-1/ASK1 complex, thus inhibiting cardiomyocyte apoptosis. In conclusion, our results demonstrate that corylin ameliorated cardiac dysfunction after MIR injury by reducing myocardial apoptosis.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5 , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-raf , Apoptose/efeitos dos fármacos , Animais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos , Humanos , Psoralea/química , Modelos Animais de Doenças
2.
Toxicol In Vitro ; 100: 105920, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173682

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic in nature. Existing treatment modalities for TNBC are associated with severe side effects. Thioredoxin reductase (TRXR), the pivotal component of the thioredoxin system, remains overexpressed in various cancer cells including TNBC; promotes cell growth, proliferation, and metastasis, and inhibits apoptosis. Pestalotioprolide E is one of the potent macrolides, a class of secondary metabolites derived from an endophytic fungus Pestalotiopsis microspora with relatively unexplored biological activities. Our study revealed increased expression and activity of TRXR1 in MDA-MB-231 cells compared to the non-cancerous cells. In silico docking analysis and in vitro activity assay demonstrated that Pestalotioprolide E directly interacts with TRXR1 and inhibits its enzymatic activity. This inhibition induces apoptosis via TRX1/ASK1/P38MAPK death signaling cascade and retards metastasis through modulating VEGF, MMP-2, MMP-9, E-cadherin, N-cadherin in MDA-MB-231 cells. Taken together present study establishes TRXR1 as a molecular target for Pestalotioprolide E and its anticancer effect can be attributed to the inhibition of TRXR1 activity in MDA-MB-231.


Assuntos
Antineoplásicos , Apoptose , MAP Quinase Quinase Quinase 5 , Macrolídeos , Transdução de Sinais , Tiorredoxina Redutase 1 , Tiorredoxinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Macrolídeos/farmacologia , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Apoptose/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Feminino
3.
Artigo em Inglês | MEDLINE | ID: mdl-39103134

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that can damage various organizations and physiques through oxidative stress. Quercetin (Que) is a rich polyphenol flavonoid with good anti-inflammatory and antioxidant effects. However, the protection mechanism of Que against DEHP exposure-induced IPEC-J2 cell injury and the implication of autophagy, apoptosis and immunity are still unclear. In this experiment, we looked into the toxicity regime of DEHP exposure on IPEC-J2 cells and the antagonistic function of Que on DEHP. In the experiment, 135 µM DEHP and/or 80 µM Que were used to treat the IPEC-J2 cells for 24h. Experiments indicated that DEHP exposure can cause increased reactive oxygen species (ROS) levels leading to oxidative stress, decreased CAT, T-AOC and GSH-Px activities, increased MDA and H2O2 accumulation, activated the ASK1/JNK signalling pathway, and further increases in the levels of apoptosis markers Bax, Caspase3, Caspase9, and Cyt-c, while reduced the Bcl-2 expression. DEHP also increased the expression of genes linked to autophagy (ATG5, Beclin1, LC3), while decreasing the expression of P62. Additionally, DEHP exposure led to elevated levels of IL1-ß, IL-6, MCP-1, and TNF expression. When exposed to Que alone, there were no significant changes in cellular oxidative stress level, ASK1/JNK signalling pathway expression level, apoptosis, autophagy and cellular immune function. The combination of DEHP and Que treatment remarkably decreased the proportion of autophagy and apoptosis, and recovered cellular immunity. In summary, Que can attenuate DEHP-induced apoptosis and autophagy in IPEC-J2 cells by regulating the ROS/ASK1/JNK signalling pathway and improving the immune dysfunction of IPEC-J2 cells.


Assuntos
Apoptose , Autofagia , Dietilexilftalato , MAP Quinase Quinase Quinase 5 , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Quercetina , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Dietilexilftalato/toxicidade , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Suínos , Plastificantes/toxicidade
4.
Nat Commun ; 15(1): 6614, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103333

RESUMO

Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.


Assuntos
MAP Quinase Quinase Quinase 5 , Concentração de Íons de Hidrogênio , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Humanos , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Estresse Fisiológico , Transdução de Sinais , Animais , Optogenética , Sistema de Sinalização das MAP Quinases
5.
BMC Cardiovasc Disord ; 24(1): 406, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098896

RESUMO

BACKGROUND: Myocardial infarction (MI) is a major disease with high morbidity and mortality worldwide. However, existing treatments are far from satisfactory, making the exploration of potent molecular targets more imperative. The E3 ubiquitin ligase RING finger protein 5 (RNF5) has been previously reported to be involved in several diseases by regulating ubiquitination-mediated protein degradation. Nevertheless, few reports have focused on its function in cardiovascular diseases, including MI. METHODS: In this study, we established RNF5 knockout mice through precise CRISPR-mediated genome editing and utilized left anterior descending coronary artery ligation in 9-11-week-old male C57BL/6 mice. Subsequently, serum biochemical analysis and histopathological examination of heart tissues were performed. Furthermore, we engineered adenoviruses for modulating RNF5 expression and subjected neonatal rat cardiomyocytes to oxygen-glucose deprivation (OGD) to mimic ischemic conditions, demonstrating the impact of RNF5 manipulation on cellular viability. Gene and protein expression analysis provided insights into the molecular mechanisms. Statistical methods were rigorously employed to assess the significance of experimental findings. RESULTS: We found RNF5 was downregulated in infarcted heart tissue of mice and NRCMs subjected to OGD treatment. RNF5 knockout in mice resulted in exacerbated heart dysfunction, more severe inflammatory responses, and increased apoptosis after MI surgery. In vitro, RNF5 knockdown exacerbated the OGD-induced decline in cell activity, increased apoptosis, while RNF5 overexpression had the opposite effect. Mechanistically, it was proven that the kinase cascade initiated by apoptosis signal-regulating kinase 1 (ASK1) activation was closely regulated by RNF5 and mediated RNF5's protective function during MI. CONCLUSIONS: We demonstrated the protective effect of RNF5 on myocardial infarction and its function was dependent on inhibiting the activation of ASK1, which adds a new regulatory component to the myocardial infarction associated network and promises to enable new therapeutic strategy.


Assuntos
Apoptose , Modelos Animais de Doenças , MAP Quinase Quinase Quinase 5 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio , Miócitos Cardíacos , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Camundongos , Função Ventricular Esquerda , Hipóxia Celular , Ratos
6.
Inflamm Res ; 73(9): 1547-1564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008037

RESUMO

BACKGROUND: Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS: To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS: Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS: Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.


Assuntos
Inflamação , MAP Quinase Quinase Quinase 5 , Microglia , Proteínas Repressoras , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Camundongos , Linhagem Celular , Inflamação/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Sistema de Sinalização das MAP Quinases , Microglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Biomed Pharmacother ; 178: 117214, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079264

RESUMO

Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human ß-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.


Assuntos
Antineoplásicos , MAP Quinase Quinase Quinase 5 , Neoplasias , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Exp Gerontol ; 194: 112523, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025384

RESUMO

Skeletal muscle aging in rats is a reduction in skeletal muscle mass caused by a decrease in the number or volume of skeletal muscle myofibers. Apoptosis has been recognized to play a key role in accelerating the process of skeletal muscle aging in rats. The thioredoxin (Trx) system is a widely expressed oxidoreductase system that controls the cellular reduction/oxidation state and has both potent anti-free radical damage and important pro-growth and apoptosis inhibitory functions. Previous studies have shown that exercise delays skeletal muscle aging. However, it is unclear whether exercise attenuates skeletal muscle aging via the Trx system. Therefore, the present study used the Trx system as an entry point to explore the effect of aerobic exercise to improve skeletal muscle aging in rats and its possible mechanisms, and to provide a theoretical basis for exercise to delay skeletal muscle aging in rats. It was shown that aerobic exercise in senescent rats resulted in increased gastrocnemius index, decreased body weight, increased endurance, decreased skeletal muscle cell apoptosis, increased activity and protein expression of the Trx system, and decreased expression of p38 and ASK1. Based on these findings, we conclude that 10 weeks of aerobic exercise may enhance the anti-apoptotic effect of Trx by up-regulating Trx and Trx reductase (TR) protein expression, which in turn increases Trx activity in rat skeletal muscle, and ultimately alleviates apoptosis in senescent skeletal muscle cells.


Assuntos
Envelhecimento , Apoptose , Músculo Esquelético , Condicionamento Físico Animal , Tiorredoxinas , Animais , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Masculino , Tiorredoxinas/metabolismo , Condicionamento Físico Animal/fisiologia , Envelhecimento/fisiologia , Ratos , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos Sprague-Dawley , Tiorredoxina Dissulfeto Redutase/metabolismo , Resistência Física/fisiologia
9.
Oncol Rep ; 52(3)2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39054955

RESUMO

Ovarian cancer is a gynecological malignant tumor with the highest mortality rate, and chemotherapy resistance seriously affects patient therapeutic outcomes. It has been shown that the high expression of anti­apoptotic proteins Bcl­2 and Bcl­xL is closely related to ovarian cancer chemotherapy resistance. Therefore, reducing Bcl­2 and Bcl­xL expression levels may be essential for reversing drug resistance in ovarian cancer. ABT­737 is a BH3­only protein mimetic, which can effectively inhibit the expression of the anti­apoptotic proteins Bcl­xL and Bcl­2. Although it has been shown that ABT­737 can increase the sensitivity of ovarian cancer cells to cisplatin, the specific molecular mechanism remains unclear and requires further investigation. In the present study, the results revealed that ABT­737 can significantly increase the activation levels of JNK and ASK1 induced by cisplatin in A2780/DDP cells, which are cisplatin­resistant ovarian cancer cells. Inhibition of the JNK and ASK1 pathway could significantly reduce cisplatin cytotoxicity increased by ABT­737 in A2780/DDP cells, while inhibiting the ASK1 pathway could reduce JNK activation. In addition, it was further determined that ABT­737 could increase reactive oxygen species (ROS) levels in A2780/DDP cells induced by cisplatin. Furthermore, the inhibition of ROS could significantly reduce JNK and ASK1 activation and ABT­737­mediated increased cisplatin cytotoxicity in A2780/DDP cells. Overall, the current data identified that activation of the ROS­ASK1­JNK signaling axis plays an essential role in the ability of ABT­737 to increase cisplatin sensitivity in A2780/DDP cells. Therefore, upregulation the ROS­ASK1­JNK signaling axis is a potentially novel molecular mechanism by which ABT­737 can enhance cisplatin sensitivity of ovarian cancer cells. In addition, the present research can also provide new therapeutic strategies and new therapeutic targets for patients with cisplatin­resistant ovarian cancer with high Bcl­2/Bcl­xL expression patterns.


Assuntos
Compostos de Bifenilo , Cisplatino , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase Quinase 5 , Sistema de Sinalização das MAP Quinases , Nitrofenóis , Neoplasias Ovarianas , Piperazinas , Espécies Reativas de Oxigênio , Sulfonamidas , Humanos , Cisplatino/farmacologia , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sulfonamidas/farmacologia , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
10.
Phytomedicine ; 130: 155482, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824823

RESUMO

BACKGROUND: Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE: This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS: Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS: The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION: OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Lipopolissacarídeos , Fator de Transcrição STAT3 , Saponinas , Espirostanos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Saponinas/farmacologia , Espirostanos/farmacologia , Camundongos , Fator de Transcrição STAT3/metabolismo , Humanos , Anti-Inflamatórios/farmacologia , Masculino , MAP Quinase Quinase Quinase 5/metabolismo , Células A549 , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Ophiopogon/química , Inflamação/tratamento farmacológico , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Raízes de Plantas/química
11.
Inorg Chem ; 63(25): 11779-11787, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38850241

RESUMO

Cisplatin is a widely used anticancer drug. In addition to inducing DNA damage, increased levels of reactive oxygen species (ROS) play a significant role in cisplatin-induced cell death. Thioredoxin-1 (Trx1), a redox regulatory protein that can scavenge ROS, has been found to eliminate cisplatin-induced ROS, while elevated Trx1 levels are associated with cisplatin resistance. However, it is unknown whether the effect of Trx1 on the cellular response to cisplatin is due to its direct reaction and how this reaction influences the activity of Trx1. In this work, we performed detailed studies of the reaction between Trx1 and cisplatin. Trx1 is highly reactive to cisplatin, and the catalytic motif of Trx1 (CGPC) is the primary binding site of cisplatin. Trx1 can bind up to 6 platinum moieties, resulting in the structural alteration and oligomerization of Trx1 depending on the degree of platination. Platination of Trx1 inhibits its interaction with ASK1, a Trx1-binding protein that regulates cell apoptosis. Furthermore, the reaction with cisplatin suppresses drug-induced ROS generation, which could be associated with drug resistance. This study provides more insight into the mechanism of action of cisplatin.


Assuntos
Antineoplásicos , Cisplatino , MAP Quinase Quinase Quinase 5 , Oxirredução , Espécies Reativas de Oxigênio , Tiorredoxinas , Cisplatino/farmacologia , Cisplatino/química , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , MAP Quinase Quinase Quinase 5/metabolismo , Homeostase/efeitos dos fármacos , Apoptose/efeitos dos fármacos
12.
Funct Integr Genomics ; 24(4): 116, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910225

RESUMO

Chloroplasts are not only critical photosynthesis sites in plants, but they also participate in plastidial retrograde signaling in response to developmental and environmental signals. MEcPP (2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate) is an intermediary in the methylerythritol phosphate (MEP) pathway in chloroplasts. It is a critical precursor for the synthesis of isoprenoids and terpenoid derivatives, which play crucial roles in plant growth and development, photosynthesis, reproduction, and defense against environmental constraints. Accumulation of MEcPP under stressful conditions triggers the expression of IMPα-9 and TPR2, contributing to the activation of abiotic stress-responsive genes. In this correspondence, we discuss plastidial retrograde signaling in support of a recently published paper in Molecular Plant (Zeng et al. 2024). We hope that it can shed more insight on the retrograde signaling cascade.


Assuntos
Cloroplastos , Estresse Fisiológico , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Eritritol/metabolismo , Eritritol/análogos & derivados , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos Açúcares/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética
13.
Am J Pathol ; 194(9): 1737-1751, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879082

RESUMO

This study investigated the role of apoptosis signal-regulated kinase-1 (ASK1) in intervertebral disc degeneration (IDD). The nucleus pulposus (NP) tissues of non-IDD and IDD patients were subjected to hematoxylin and eosin, Safranin O-fast green, and immunohistochemical staining. Quantitative real-time PCR was used to assess the ASK1 mRNA level within NP tissue samples and cells. The Cell Counting Kit-8 assay, senescence-associated ß-galactosidase staining, and flow cytometry were conducted to assess the viability, senescence, and apoptosis of NP cells, respectively. Extracellular matrix-related factors were detected using Western blot analysis. Furthermore, the effect of ASK1 on the IDD rat model was evaluated. Finally, c-Jun N-terminal kinase (JNK) inhibitors were used to verify the effect of the JNK/p38 signaling on IDD. ASK1 mRNA and protein were up-regulated within NP tissue samples from the IDD group, IL-1ß-stimulated NP cells, and IDD rats. ASK1 inhibition promoted cell viability and repressed the senescence and apoptosis of NP cells, promoted collagen II and aggrecan, inhibited matrix metalloproteinase 3/9 and a disintegrin and metalloproteinase with thrombospondin motifs 4/5 protein levels, and increased NP cells in rat intervertebral disc tissues. ASK1 overexpression exerted the opposite effects of ASK1 inhibition on NP cells. Additionally, JNK/p38 signaling suppression could reverse the ASK1 up-regulation-induced dysfunction. In conclusion, ASK1 facilitated the senescence and apoptosis of NP cells in promoting IDD progression via the JNK/p38 pathway.


Assuntos
Apoptose , Senescência Celular , Degeneração do Disco Intervertebral , MAP Quinase Quinase Quinase 5 , Núcleo Pulposo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Senescência Celular/fisiologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo
14.
Commun Biol ; 7(1): 691, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839869

RESUMO

Cellular senescence is a stress-induced, permanent cell cycle arrest involved in tumor suppression and aging. Senescent cells secrete bioactive molecules such as pro-inflammatory cytokines and chemokines. This senescence-associated secretory phenotype (SASP) has been implicated in immune-mediated elimination of senescent cells and age-associated chronic inflammation. However, the mechanisms regulating the SASP are incompletely understood. Here, we show that the stress-responsive kinase apoptosis signal-regulating kinase 1 (ASK1) promotes inflammation in senescence and aging. ASK1 is activated during senescence and increases the expression of pro-inflammatory cytokines and chemokines by activating p38, a kinase critical for the SASP. ASK1-deficient mice show impaired elimination of oncogene-induced senescent cells and an increased rate of tumorigenesis. Furthermore, ASK1 deficiency prevents age-associated p38 activation and inflammation and attenuates glomerulosclerosis. Our results suggest that ASK1 is a driver of the SASP and age-associated chronic inflammation and represents a potential therapeutic target for age-related diseases.


Assuntos
Envelhecimento , Senescência Celular , Inflamação , MAP Quinase Quinase Quinase 5 , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Animais , Inflamação/metabolismo , Camundongos , Humanos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fenótipo Secretor Associado à Senescência/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Citocinas/metabolismo , Citocinas/genética
15.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721693

RESUMO

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla , Glucose , Inflamação , MAP Quinase Quinase Quinase 5 , Neurônios , Oxigênio , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
16.
J Gastroenterol Hepatol ; 39(8): 1695-1703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804845

RESUMO

BACKGROUND AND AIM: Hydronidone (HDD) is a novel pirfenidone derivative developed initially to reduce hepatotoxicity. Our previous studies in animals and humans have demonstrated that HDD treatment effectively attenuates liver fibrosis, yet the underlying mechanism remains unclear. This study aimed to investigate whether HDD exerts its anti-fibrotic effect by inducing apoptosis in activated hepatic stellate cells (aHSCs) through the endoplasmic reticulum stress (ERS)-associated mitochondrial apoptotic pathway. METHODS: The carbon tetrachloride (CCl4)- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis models were used for in vivo studies. In vitro studies were conducted using the human hepatic stellate cell line LX-2. The apoptotic effect of HDD on aHSCs was examined using TUNEL and flow cytometry assays. The small interfering RNA (siRNA) technique was employed to downregulate the expression of interest genes. RESULTS: HDD treatment significantly promoted apoptosis in aHSCs in both the CCl4- and DDC-induced liver fibrosis in mice and LX-2 cells. Mechanistic studies revealed that HDD triggered ERS and subsequently activated the IRE1α-ASK1-JNK pathway. Furthermore, the influx of cytochrome c from the mitochondria into the cytoplasm was increased, leading to mitochondrial dysfunction and ultimately triggering apoptosis in aHSCs. Notably, inhibition of IRE1α or ASK1 by siRNA partially abrogated the pro-apoptotic effect of HDD in aHSCs. CONCLUSIONS: The findings of both in vivo and in vitro studies suggest that HDD induces apoptosis in aHSCs via the ERS-associated mitochondrial apoptotic pathway, potentially contributing to the amelioration of liver fibrosis.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Tetracloreto de Carbono , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Linhagem Celular , Piridonas/farmacologia , Camundongos , MAP Quinase Quinase Quinase 5/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
17.
Biochemistry (Mosc) ; 89(3): 417-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648762

RESUMO

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.


Assuntos
Apoptose , Plaquetas , Curcumina , MAP Quinase Quinase Quinase 5 , Estresse Oxidativo , Curcumina/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , Humanos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
18.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678126

RESUMO

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Assuntos
Autofagia , Neoplasias da Mama , Ferroptose , MAP Quinase Quinase Quinase 5 , Humanos , Ferroptose/fisiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Autofagia/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo
19.
Bioorg Chem ; 147: 107391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677010

RESUMO

Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated. The System Structure Activity Relationship (SAR) study discovered a promising compound 33c, which has a strong inhibitory effect on ASK1. Noteworthy observations included a discernible reduction in lipid droplets within LO2 cells stained with Oil Red O, coupled with a decrease in LDL, CHO, and TG content within the NASH model cell group. Mechanistic inquiries revealed that compound 33c could inhibit the protein expression levels of the upregulated ASK1-p38/JNK signaling pathway in TNF-α treated HGC-27 cells and regulate apoptotic proteins. In summary, these findings suggest that compound 33c may be valuable for further research as a potential candidate compound against NASH.


Assuntos
Desenho de Fármacos , Indazóis , MAP Quinase Quinase Quinase 5 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Humanos , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indazóis/farmacologia , Indazóis/síntese química , Indazóis/química , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Estrutura Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
20.
Elife ; 132024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536085

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.


Assuntos
MAP Quinase Quinase Quinase 5 , Tiorredoxinas , Microscopia Crioeletrônica , Apoptose , Biofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA